login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377526
E.g.f. satisfies A(x) = 1 + x*exp(x)*A(x)^5.
2
1, 1, 12, 273, 9604, 460105, 27966126, 2062219117, 178897527768, 17853102321489, 2014988044093210, 253792946798597701, 35290880970687039732, 5370055269772474994713, 887591963820839894529654, 158357028389450319651183165, 30332317748593431632078480176, 6208425034878692992471996557217
OFFSET
0,3
COMMENTS
In general, for k > 1, if e.g.f. satisfies A(x) = 1 + x*exp(x)*A(x)^k, then a(n) ~ sqrt(k*(1 + LambertW((k-1)^(k-1)/k^k))) * n^(n-1) / ((k-1)^(3/2) * exp(n) * LambertW((k-1)^(k-1)/k^k)^n). - Vaclav Kotesovec, Nov 11 2024
FORMULA
a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(5*k,k)/( (4*k+1)*(n-k)! ) = n! * Sum_{k=0..n} k^(n-k) * A002294(k)/(n-k)!.
a(n) ~ sqrt(5*(1 + LambertW(256/3125))) * n^(n-1) / (8 * exp(n) * LambertW(256/3125)^n). - Vaclav Kotesovec, Nov 11 2024
PROG
(PARI) a(n) = n!*sum(k=0, n, k^(n-k)*binomial(5*k, k)/((4*k+1)*(n-k)!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 30 2024
STATUS
approved