OFFSET
0,3
COMMENTS
In general, for k > 1, if e.g.f. satisfies A(x) = 1 + x*exp(x)*A(x)^k, then a(n) ~ sqrt(k*(1 + LambertW((k-1)^(k-1)/k^k))) * n^(n-1) / ((k-1)^(3/2) * exp(n) * LambertW((k-1)^(k-1)/k^k)^n). - Vaclav Kotesovec, Nov 11 2024
FORMULA
a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(5*k,k)/( (4*k+1)*(n-k)! ) = n! * Sum_{k=0..n} k^(n-k) * A002294(k)/(n-k)!.
a(n) ~ sqrt(5*(1 + LambertW(256/3125))) * n^(n-1) / (8 * exp(n) * LambertW(256/3125)^n). - Vaclav Kotesovec, Nov 11 2024
PROG
(PARI) a(n) = n!*sum(k=0, n, k^(n-k)*binomial(5*k, k)/((4*k+1)*(n-k)!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 30 2024
STATUS
approved