The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A169961 a(n) = binomial(12*n, n). 10
 1, 12, 276, 7140, 194580, 5461512, 156238908, 4529365776, 132601016340, 3911395881900, 116068178638776, 3461014728350400, 103619293824707388, 3112781199432937200, 93780365051563029360, 2832430653037446854640, 85733828145510955528212, 2600022926684976508835280 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA a(n) = C(12*n-1,n-1)*C(144*n^2,2)/(3*n*C(12*n+1,3)), n>0. - Gary Detlefs, Jan 02 2014 From Bradley Klee, Jul 01 2018 : (Start) G.f. G(x) and derivatives G^(n)(x)=d^n/dx^n G(x) satisfy a Picard-Fuchs type differential equation, 0=Sum_{m=0..11}(v1_{n}*x^(n+1)-v2_{n}*x^n)*G^(n)(x), with integer coefficient vectors: v1={479001600, 647647046323200, 99278289544896000, 1290870365178240000, 4245175263164774400, 5313701967430348800, 3083267876011868160, 918801061774295040, 147161631039160320, 12624021804810240, 539424077119488, 8916100448256} v2={0, 39916800, 14079254112000, 1273481816745600, 11475123393888000, 27687351298068000, 25909403608075680, 11200182937408080, 2427742942653600, 268452344620350, 14265583530550, 285311670611} G.f.: G(x) = 11F10(m/12;n/11;12^12/11^11*x), m=1..11, n=1..10. (End) From Vaclav Kotesovec, Jul 15 2018: (Start) Recurrence: 11*n*(11*n - 10)*(11*n - 9)*(11*n - 8)*(11*n - 7)*(11*n - 6)*(11*n - 5)*(11*n - 4)*(11*n - 3)*(11*n - 2)*(11*n - 1)*a(n) = 41472*(2*n - 1)*(3*n - 2)*(3*n - 1)*(4*n - 3)*(4*n - 1)*(6*n - 5)*(6*n - 1)*(12*n - 11)*(12*n - 7)*(12*n - 5)*(12*n - 1)*a(n-1). a(n) ~ 2^(24*n + 1/2) * 3^(12*n + 1/2) / (sqrt(Pi*n) * 11^(11*n + 1/2)). (End) From Peter Bala, Feb 21 2022: (Start) The o.g.f. A(x) is algebraic: (1 - A(x))*(1 + 11*A(x))^11 + (12^12)*x*A(x)^12 = 0. Sum_{n >= 1} a(n)*( x*(11*x + 12)^11/(12^12*(1 + x)^12) )^n = x. (End) MATHEMATICA Table[Binomial[12 n, n], {n, 0, 20}] (* Vincenzo Librandi, Aug 07 2014 *) CoefficientList[Series[HypergeometricPFQ[Range[11]/12, Range[10]/11, (12^12)/(11^11)*x], {x, 0, 10}], x] (* Bradley Klee, Jul 01 2018 *) PROG (Magma) [Binomial(12*n, n): n in [0..20]]; // Vincenzo Librandi, Aug 07 2014 (PARI) a(n) = binomial(12*n, n); \\ Michel Marcus, Jul 02 2018 CROSSREFS Cf. A000984, A005809, A005810, A001449, A004355, A004368, A004381, A169958, A169959, A169960. Sequence in context: A117415 A152129 A115461 * A363384 A220383 A296383 Adjacent sequences: A169958 A169959 A169960 * A169962 A169963 A169964 KEYWORD nonn AUTHOR N. J. A. Sloane, Aug 07 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 05:29 EST 2023. Contains 367630 sequences. (Running on oeis4.)