login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A364983
E.g.f. satisfies A(x) = 1 + x*exp(x)*A(x)^3.
9
1, 1, 8, 111, 2332, 66125, 2368086, 102616759, 5222638856, 305436798009, 20186656927210, 1488021110087171, 121044207712073196, 10771321471267219525, 1040877104088653696606, 108549742436141933697135, 12151467262433697322437136, 1453367472748861203540942065
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(3*k+1,k)/( (3*k+1)*(n-k)! ) = n! * Sum_{k=0..n} k^(n-k) * A001764(k)/(n-k)!.
a(n) ~ sqrt(3) * sqrt(1 + LambertW(4/27)) * n^(n-1) / (2^(3/2) * exp(n) * LambertW(4/27)^n). - Vaclav Kotesovec, Nov 11 2024
PROG
(PARI) a(n) = n!*sum(k=0, n, k^(n-k)*binomial(3*k, k)/((2*k+1)*(n-k)!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 15 2023
STATUS
approved