login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307678
G.f. A(x) satisfies: A(x) = 1 + x*A(x)^3/(1 - x).
18
1, 1, 4, 19, 101, 578, 3479, 21714, 139269, 912354, 6078832, 41066002, 280636657, 1936569717, 13475408847, 94446518559, 666149216744, 4724705621702, 33676421377532, 241100485812034, 1732999323835918, 12501487280292424, 90478497094713958, 656788523782034248, 4780725762185300389
OFFSET
0,3
COMMENTS
Convolution square root of A270386.
LINKS
Guillermo Esteban, Clemens Huemer, and Rodrigo I. Silveira, New production matrices for geometric graphs, arXiv:2003.00524 [math.CO], 2020.
FORMULA
a(0) = 1; a(n) = Sum_{j=0..n-1} Sum_{i=0..j} Sum_{k=0..i} a(k)*a(i-k)*a(j-i).
a(n) ~ 31^(n + 1/2) / (3*sqrt(Pi) * n^(3/2) * 2^(2*n+2)). - Vaclav Kotesovec, May 06 2019
G.f.: (2/sqrt(3*x/(1-x)))*sin((1/3)*asin(sqrt((27*x/(1-x))/4))). - Vladimir Kruchinin, Feb 05 2022
a(n) = Sum_{k=0..n} C(n-1,n-k)*C(3*k,k)/(2*k+1). - Vladimir Kruchinin, Feb 05 2022
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 19*x^3 + 101*x^4 + 578*x^5 + 3479*x^6 + 21714*x^7 + 139269*x^8 + 912354*x^9 + 6078832*x^10 + ...
MATHEMATICA
terms = 24; A[_] = 1; Do[A[x_] = 1 + x A[x]^3/(1 - x) + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = Sum[Sum[Sum[a[k] a[i - k] a[j - i], {k, 0, i}], {i, 0, j}], {j, 0, n - 1}]; Table[a[n], {n, 0, 24}]
terms = 24; CoefficientList[Series[2 Sqrt[(1 - x) Sin[1/3 ArcSin[3/2 Sqrt[3] Sqrt[x/(1 - x)]]]^2/x]/Sqrt[3], {x, 0, terms}], x]
PROG
(Maxima)
a(n):=sum(binomial(n-1, n-k)*(binomial(3*k, k))/(2*k+1), k, 0, n); /* Vladimir Kruchinin, Feb 05 2022*/
(PARI) {a(n) = my(A=[1]); for(m=1, n, A=concat(A, 0);
A[#A] = 1 + sum(k=1, m-1, (polcoeff(Ser(A)^3, k)) )); A[n+1]}
for(n=0, 30, print1(a(n), ", ")) \\ Vaclav Kotesovec, Nov 23 2024, after Paul D. Hanna
CROSSREFS
Cf. A001764, A002212, A006013, A127897, A188687 (partial sums), A270386.
Sequence in context: A307121 A261490 A277956 * A151382 A234958 A188675
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 21 2019
STATUS
approved