login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277956
a(n) = (n+2)*Sum_{i=0..n}(binomial(3*n-2*i+1, n-i)/(2*n-i+2)).
2
1, 4, 19, 101, 573, 3382, 20483, 126292, 788878, 4976489, 31635811, 202354517, 1300880374, 8398175713, 54409200963, 353571026085, 2303666554659, 15043760670031, 98439176169692, 645290365460761, 4236768489465944, 27857102370774193
OFFSET
0,2
LINKS
FORMULA
G.f.: F'(x)*F(x)/(1-F(x))/x, where F(x)/x is g.f. of A001764.
From Vaclav Kotesovec, Nov 06 2016: (Start)
Recurrence: 2*(n+1)*(2*n + 1)*(91*n^4 - 232*n^3 + 15*n^2 + 266*n - 120)*a(n) = (2821*n^6 - 4189*n^5 - 10027*n^4 + 18573*n^3 - 3498*n^2 - 3968*n + 960)*a(n-1) - (2821*n^6 - 4189*n^5 - 10027*n^4 + 18573*n^3 - 3498*n^2 - 3968*n + 960)*a(n-2) + 3*(3*n - 5)*(3*n - 4)*(91*n^4 + 132*n^3 - 135*n^2 - 36*n + 20)*a(n-3).
a(n) ~ 3^(3*n+7/2) / (7 * sqrt(Pi*n) * 2^(2*n+3)). (End)
a(n) = A026004(n)*hypergeom([1,-2*n-2,-n],[-3*n/2-1/2,-3*n/2],1/4). - Peter Luschny, Nov 06 2016
MAPLE
h := n -> hypergeom([1, -2*n-2, -n], [-3*n/2-1/2, -3*n/2], 1/4):
b := n -> binomial(3*n+1, n)*(n+2)/(2*n+2): # A026004
a := n -> `if`(n=0, 1, b(n)*simplify(h(n))):
seq(a(n), n=0..21); # Peter Luschny, Nov 06 2016
MATHEMATICA
f[n_] := (n + 2)Sum[ Binomial[3n - 2i + 1, n - i]/(2n - i + 2), {i, 0, n}]; Array[f, 22, 0] (* Robert G. Wilson v, Nov 06 2016 *)
PROG
(Maxima)
F(x):=x*(2/sqrt(3*x))*sin((1/3)*asin(sqrt(27*x/4)));
taylor(diff(F(x), x)*F(x)/(1-F(x))/x, x, 0, 10);
(PARI) for(n=0, 25, print1((n+2)*sum(i=0, n, (binomial(3*n-2*i+1, n-i)/(2*n-i+2))), ", ")) \\ G. C. Greubel, Apr 09 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Nov 05 2016
STATUS
approved