login
A277953
Binary representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 14", based on the 5-celled von Neumann neighborhood.
4
1, 11, 11, 111, 1011, 10111, 101011, 1010111, 10101011, 101010111, 1010101011, 10101010111, 101010101011, 1010101010111, 10101010101011, 101010101010111, 1010101010101011, 10101010101010111, 101010101010101011, 1010101010101010111, 10101010101010101011
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
Essentially the same as A267051. - R. J. Mathar, Nov 09 2016
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Nov 06 2016: (Start)
G.f.: (1+x-100*x^2) / ((1-x)*(1+x)*(1-10*x)).
a(n) = 10*a(n-1)+a(n-2)-10*a(n-3) for n>2.
a(n) = (539-450*(-1)^n+10^(1+n))/99. (End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=14; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]][[i]], Range[i, 2*i-1]], 10], {i, 1, stages-1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Nov 05 2016
STATUS
approved