login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277953
Binary representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 14", based on the 5-celled von Neumann neighborhood.
4
1, 11, 11, 111, 1011, 10111, 101011, 1010111, 10101011, 101010111, 1010101011, 10101010111, 101010101011, 1010101010111, 10101010101011, 101010101010111, 1010101010101011, 10101010101010111, 101010101010101011, 1010101010101010111, 10101010101010101011
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
Essentially the same as A267051. - R. J. Mathar, Nov 09 2016
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Nov 06 2016: (Start)
G.f.: (1+x-100*x^2) / ((1-x)*(1+x)*(1-10*x)).
a(n) = 10*a(n-1)+a(n-2)-10*a(n-3) for n>2.
a(n) = (539-450*(-1)^n+10^(1+n))/99. (End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=14; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]][[i]], Range[i, 2*i-1]], 10], {i, 1, stages-1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Nov 05 2016
STATUS
approved