login
A277959
Numbers n such that 2 is the largest decimal digit of n^2.
15
11, 101, 110, 149, 1001, 1010, 1011, 1100, 1101, 1490, 10001, 10010, 10011, 10100, 10110, 11000, 11001, 11010, 14499, 14900, 100001, 100010, 100011, 100100, 100101, 100110, 101000, 101001, 101100, 110000, 110001, 110010, 110100, 144990, 149000, 316261
OFFSET
1,1
COMMENTS
The terms > 1 of A058411 can be considered as primitive elements of this sequence, obtained by multiplying those by powers of 10 (cf. formula). These terms of A058411 have at least 2 nonzero digits, and therefore their square has at least one digit 2. - M. F. Hasler, Nov 15 2017
LINKS
M. F. Hasler, Table of n, a(n) for n = 1..1380 (first 50 terms from Colin Barker)
FORMULA
Equals (A058411 \ {1})*A011557, where A011557 = { 10^k; k >= 0 }. - M. F. Hasler, Nov 16 2017
MATHEMATICA
Select[Range[4*10^5], And[#[[2]] > 0, Union@ Take[RotateLeft[#, 2], 7] == {0}] &@ DigitCount[#^2] &] (* Michael De Vlieger, Nov 16 2017 *)
PROG
(PARI) L=List(); for(n=1, 10000, if(vecmax(digits(n^2))==2, listput(L, n))); Vec(L)
(PARI) A277959(LIM=1e15, L=List(), N=1)={while(LIM>N=next_A058411(N), my(t=N); until(LIM<t*=10, listput(L, t))); Set(L)} \\ M. F. Hasler, Nov 15 2017
CROSSREFS
Cf. A277946 (the squares); A277960, A277961, A295005, ..., A295009 (analog for largest digit 3, 4, 5, ..., 9).
Cf. A058411, A058412 and A058413, ..., A058474. (Similar but no trailing 0's allowed.)
Cf. A136808 and A136809, ..., A137147 for other digit combinations. (Numbers must satisfy the same restriction as their squares.)
Sequence in context: A359610 A239236 A043494 * A278937 A038444 A115824
KEYWORD
nonn,base
AUTHOR
Colin Barker, Nov 06 2016
EXTENSIONS
Edited by M. F. Hasler, Nov 16 2017
STATUS
approved