login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277962
Least k such that A006577(k) = A006577(n) + A006577(n+1).
1
2, 6, 12, 3, 34, 49, 9, 72, 98, 18, 25, 28, 33, 39, 36, 7, 57, 406, 65, 11, 72, 86, 98, 114, 114, 129, 913, 153, 153, 171, 27, 172, 203, 33, 39, 270, 270, 295, 270, 290, 290, 305, 361, 57, 57, 386, 73, 78, 481, 481, 78, 72, 514, 20174, 609, 641, 641, 641, 641
OFFSET
1,1
COMMENTS
A006577(n) is the number of halving and tripling steps to reach 1 in the '3x+1' problem.
The distinct squares in the sequence are 9, 25, 36, 49, 169, 361, ...
The distinct primes in the sequence are 2, 3, 7, 11, 31, 41, 47, 71, 73, 97, 103, ...
EXAMPLE
a(5)=34 because A006577(34) = 13 = A006577(5) + A006577(6) = 5 + 8.
MAPLE
nn:=3*10^6:U:=array(1..nn):V:=array(1..nn):
for i from 1 to nn do:
m:=i:it0:=0:
for j from 1 to nn while(m<>1) do:
if irem(m, 2)=0
then
m:=m/2:it0:=it0+1:
else
m:=3*m+1:it0:=it0+1:
fi:
od:
U[i]:=it0:
od:
for n from 1 to 60 do:
ii:=0:
for k from 1 to nn while(ii=0) do:
if U[k]=U[n]+ U[n+1]
then
ii:=1:printf(`%d, `, k):
else
fi:
od:
od:
MATHEMATICA
f:=Table[Length[NestWhileList[If[EvenQ[#], #/2, 3#+1]&, n, #!=1&]]-1, {n, 3*10^6}]; Do[k=1; While[f[[k]]!=f[[m]]+f[[m+1]], k++]; Print[m, " ", k], {m, 1, 60}]
CROSSREFS
Cf. A006577.
Sequence in context: A188894 A355416 A054579 * A209386 A205103 A367575
KEYWORD
nonn
AUTHOR
Michel Lagneau, Nov 06 2016
STATUS
approved