

A278937


Numbers k such that 3 is the largest decimal digit of k^3.


8



11, 101, 110, 1001, 1010, 1100, 10001, 10010, 10100, 11000, 100001, 100010, 100100, 101000, 110000, 684917, 1000001, 1000010, 1000100, 1001000, 1010000, 1100000, 6849170, 10000001, 10000010, 10000100, 10001000, 10010000, 10100000, 11000000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

A038444 is a subsequence. Are there an infinite number of terms not in A038444 that are not a multiple of 10?  Chai Wah Wu, Dec 02 2016
Conjecture: sequence is equal to A038444 plus terms of the form 684917*10^k for k >= 0.  Chai Wah Wu, Sep 02 2017


LINKS



FORMULA



EXAMPLE

684917 is in the sequence because 684917^3 = 321302302131323213.


PROG

(PARI) select(n>vecmax(digits(n^3))==3, vector(1000000, n, n))
(Magma) [n: n in [1..2*10^7]  Max(Intseq(n^3)) eq 3]; // Vincenzo Librandi, Dec 03 2016


CROSSREFS



KEYWORD

nonn,base


AUTHOR



STATUS

approved



