login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038444
Sums of 2 distinct powers of 10.
27
11, 101, 110, 1001, 1010, 1100, 10001, 10010, 10100, 11000, 100001, 100010, 100100, 101000, 110000, 1000001, 1000010, 1000100, 1001000, 1010000, 1100000, 10000001, 10000010, 10000100, 10001000, 10010000, 10100000, 11000000, 100000001, 100000010, 100000100
OFFSET
1,1
LINKS
FORMULA
G.f.: (10*x - 55*x^2 + Sum_{d>=1} (4*10^d+5)*x^((d^2-d)/2+1) - Sum_{d>=1} (445*10^(d-1)+5)*x^((d^2-d)/2+2))/(5*(1-x)*(1-10*x)). - Robert Israel, Oct 14 2016
MAPLE
seq(seq(10^d + 10^j, j=0..d-1), d=1..10); # Robert Israel, Oct 14 2016
MATHEMATICA
Sort[Total/@Subsets[10^Range[0, 7], {2}]] (* Harvey P. Dale, Apr 20 2012 *)
PROG
(Haskell)
a038444 n = a038444_list !! (n-1)
a038444_list = 11 : f [11] 90 where
f xs@(x:_) z = ys ++ f ys (10 * z) where
ys = (x + z) : map (* 10) xs
-- Reinhard Zumkeller, Jan 28 2015
(PARI) a(n)= 10^(n-1-binomial(sqrtint(n*8)\/2, 2)) + 10^((sqrtint(n*8)+1)\2); \\ Ruud H.G. van Tol, Nov 29 2024
CROSSREFS
Subsequence of A052216 and of A007088.
Cf. A018900.
Sequence in context: A043494 A277959 A278937 * A115824 A364326 A208259
KEYWORD
nonn,easy
EXTENSIONS
Offset corrected by Reinhard Zumkeller, Jan 28 2015
STATUS
approved