The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052216 Sum of two powers of 10. 54
 2, 11, 20, 101, 110, 200, 1001, 1010, 1100, 2000, 10001, 10010, 10100, 11000, 20000, 100001, 100010, 100100, 101000, 110000, 200000, 1000001, 1000010, 1000100, 1001000, 1010000, 1100000, 2000000, 10000001, 10000010, 10000100, 10001000, 10010000, 10100000 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Numbers n such that sum of digits is 2. A007953(a(n)) = 2; number of repdigits = #{2,11} = A242627(2) = 2. - Reinhard Zumkeller, Jul 17 2014 a(n) = 3*A237424(n) - 1. - Reinhard Zumkeller, Jan 28 2015 LINKS Vincenzo Librandi, T. D. Noe and R. Zumkeller, Table of n, a(n) for n = 1..10000 (first 48 terms from V. Librandi, up to 1036 from T. D. Noe) FORMULA Sum of two powers of 10: a(n) = 10^n + 10^m for n >= 0, m = 0..n. EXAMPLE The triangular array starts (see formula): 2, 11, 20, 101, 110, 200, 1001, 1010, 1100, 2000, 10001, 10010, 10100, 11000, 20000, 100001, 100010, 100100, 101000, 110000, 200000, 1000001, 1000010, 1000100, 1001000, 1010000, 1100000, 2000000, etc. - Bruno Berselli, Mar 07 2013 MATHEMATICA t = 10^Range[0, 9]; Select[Union[Flatten[Table[i + j, {i, t}, {j, t}]]], # <= t[[-1]] + 1 &] (* T. D. Noe, Oct 09 2011 *) With[{nn=7}, Sort[Join[Table[FromDigits[PadRight[{2}, n, 0]], {n, nn}], FromDigits/@Flatten[Table[Table[Insert[PadRight[{1}, n, 0], 1, i]], {n, nn}, {i, 2, n+1}], 1]]]] (* Harvey P. Dale, Nov 15 2011 *) Select[Range[10^9], Total[IntegerDigits[#]] == 2&] (* Vincenzo Librandi, Mar 07 2013 *) PROG (Magma) [n: n in [1..10100000] | &+Intseq(n) eq 2]; // Vincenzo Librandi, Mar 07 2013 (Magma) /* As a triangular array: */ [[10^n+10^m: m in [0..n]]: n in [0..8]]; // Bruno Berselli, Mar 07 2013 (Haskell) a052216 n = a052216_list !! (n-1) a052216_list = 2 : f [2] 9 where f xs@(x:_) z = ys ++ f ys (10 * z) where ys = (x + z) : map (* 10) xs -- Reinhard Zumkeller, Jan 28 2015, Jul 17 2014 (PARI) a(n)=my(d=(sqrtint(8*n)-1)\2, t=n-d*(d+1)/2-1); 10^d + 10^t \\ Charles R Greathouse IV, Dec 19 2016 (Python) from itertools import count, islice def agen(): yield from (10**i + 10**j for i in count(0) for j in range(i+1)) print(list(islice(agen(), 34))) # Michael S. Branicky, May 15 2022 CROSSREFS Subsequence of A069263 and A107679. A038444 is a subsequence. Sums of n powers of 10: A011557 (1), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225(14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20). Cf. A007953, A242614, A242627, A237424. Sequence in context: A115095 A341003 A061907 * A094629 A336034 A081242 Adjacent sequences: A052213 A052214 A052215 * A052217 A052218 A052219 KEYWORD easy,nonn,tabl AUTHOR Henry Bottomley, Feb 01 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 11:11 EDT 2023. Contains 365501 sequences. (Running on oeis4.)