login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052216 Sum of two powers of 10. 54
2, 11, 20, 101, 110, 200, 1001, 1010, 1100, 2000, 10001, 10010, 10100, 11000, 20000, 100001, 100010, 100100, 101000, 110000, 200000, 1000001, 1000010, 1000100, 1001000, 1010000, 1100000, 2000000, 10000001, 10000010, 10000100, 10001000, 10010000, 10100000 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Numbers n such that sum of digits is 2.
A007953(a(n)) = 2; number of repdigits = #{2,11} = A242627(2) = 2. - Reinhard Zumkeller, Jul 17 2014
a(n) = 3*A237424(n) - 1. - Reinhard Zumkeller, Jan 28 2015
LINKS
Vincenzo Librandi, T. D. Noe and R. Zumkeller, Table of n, a(n) for n = 1..10000 (first 48 terms from V. Librandi, up to 1036 from T. D. Noe)
FORMULA
Sum of two powers of 10: a(n) = 10^n + 10^m for n >= 0, m = 0..n.
EXAMPLE
The triangular array starts (see formula):
2,
11, 20,
101, 110, 200,
1001, 1010, 1100, 2000,
10001, 10010, 10100, 11000, 20000,
100001, 100010, 100100, 101000, 110000, 200000,
1000001, 1000010, 1000100, 1001000, 1010000, 1100000, 2000000, etc.
- Bruno Berselli, Mar 07 2013
MATHEMATICA
t = 10^Range[0, 9]; Select[Union[Flatten[Table[i + j, {i, t}, {j, t}]]], # <= t[[-1]] + 1 &] (* T. D. Noe, Oct 09 2011 *)
With[{nn=7}, Sort[Join[Table[FromDigits[PadRight[{2}, n, 0]], {n, nn}], FromDigits/@Flatten[Table[Table[Insert[PadRight[{1}, n, 0], 1, i]], {n, nn}, {i, 2, n+1}], 1]]]] (* Harvey P. Dale, Nov 15 2011 *)
Select[Range[10^9], Total[IntegerDigits[#]] == 2&] (* Vincenzo Librandi, Mar 07 2013 *)
PROG
(Magma) [n: n in [1..10100000] | &+Intseq(n) eq 2]; // Vincenzo Librandi, Mar 07 2013
(Magma) /* As a triangular array: */ [[10^n+10^m: m in [0..n]]: n in [0..8]]; // Bruno Berselli, Mar 07 2013
(Haskell)
a052216 n = a052216_list !! (n-1)
a052216_list = 2 : f [2] 9 where
f xs@(x:_) z = ys ++ f ys (10 * z) where
ys = (x + z) : map (* 10) xs
-- Reinhard Zumkeller, Jan 28 2015, Jul 17 2014
(PARI) a(n)=my(d=(sqrtint(8*n)-1)\2, t=n-d*(d+1)/2-1); 10^d + 10^t \\ Charles R Greathouse IV, Dec 19 2016
(Python)
from itertools import count, islice
def agen(): yield from (10**i + 10**j for i in count(0) for j in range(i+1))
print(list(islice(agen(), 34))) # Michael S. Branicky, May 15 2022
CROSSREFS
Subsequence of A069263 and A107679. A038444 is a subsequence.
Sums of n powers of 10: A011557 (1), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225(14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).
Sequence in context: A115095 A341003 A061907 * A094629 A336034 A081242
KEYWORD
easy,nonn,tabl
AUTHOR
Henry Bottomley, Feb 01 2000
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 11:11 EDT 2023. Contains 365501 sequences. (Running on oeis4.)