The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052213 Numbers k with prime signature(k) = prime signature(k+1). 17
 2, 14, 21, 33, 34, 38, 44, 57, 75, 85, 86, 93, 94, 98, 116, 118, 122, 133, 135, 141, 142, 145, 147, 158, 171, 177, 201, 202, 205, 213, 214, 217, 218, 230, 244, 253, 285, 296, 298, 301, 302, 326, 332, 334, 375, 381, 387, 393, 394, 429, 434, 445, 446, 453, 481 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This sequence is infinite, see A189982 and Theorem 4 in Goldston-Graham-Pintz-Yıldırım. - Charles R Greathouse IV, Jul 17 2015 This is a subsequence of A005237, hence a(n) >> n sqrt(log log n) by the Erdős-Pomerance-Sárközy result cited there. - Charles R Greathouse IV, Jul 17 2015 Sequence is not the same as A280074, first deviation is at a(212): a(212) = 2041, A280074(212) = 2024. Number 2024 is the smallest number n such that A007425(n) = A007425(n+1) with different prime signatures of numbers n and n+1 (2024 = 2^3 * 11 * 23, 2025 = 3^4 * 5^2; A007425(2024) = A007425(2025) = 90). Conjecture: also numbers n such that Product_{d|n} tau(d) = Product_{d|n+1} tau(d). - Jaroslav Krizek, Dec 25 2016 LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 D. A. Goldston, S. W. Graham, J. Pintz, and C. Y. Yıldırım, Small gaps between almost primes, the parity problem, and some conjectures of Erdos on consecutive integers (2008) MathOverflow, Question on consecutive integers with similar prime factorizations Eric Weisstein's MathWorld, Prime Signature Wikipedia, Prime signature EXAMPLE 14 = 2^1*7^1 and 15 = 3^1*5^1, so both have prime signature {1,1}. Thus, 14 is a term. MATHEMATICA pri[n_] := Sort[ Transpose[ FactorInteger[n]] [[2]]]; Select[ Range[ 2, 1000], pri[#] == pri[#+1] &] Rest[SequencePosition[Table[Sort[FactorInteger[n][[All, 2]]], {n, 500}], {x_, x_}][[All, 1]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 28 2017 *) PROG (PARI) lista(nn) = for (n=1, nn-1, if (vecsort(factor(n)[, 2]) == vecsort(factor(n+1)[, 2]), print1(n, ", ")); ); \\ Michel Marcus, Jun 10 2015 (Python) from sympy import factorint def aupto(limit): alst, prevsig = [], [1] for k in range(3, limit+2): sig = sorted(factorint(k).values()) if sig == prevsig: alst.append(k - 1) prevsig = sig return alst print(aupto(250)) # Michael S. Branicky, Sep 20 2021 CROSSREFS Cf. A005237, A189982, A260143. Sequence in context: A138047 A005237 A140578 * A280074 A359745 A086263 Adjacent sequences: A052210 A052211 A052212 * A052214 A052215 A052216 KEYWORD easy,nonn AUTHOR Erich Friedman, Jan 29 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 01:30 EST 2023. Contains 367452 sequences. (Running on oeis4.)