OFFSET
1,3
COMMENTS
Replace the first term with 4, then add 1 to all the others to find numbers k where k^3 starts with k+2. Similar processes can be used for any k+2m. (conjectured) - Dhilan Lahoti, Aug 30 2015
10^k is in the sequence for all k. For odd k, m = ceil(10^(k/2)) is in the sequence if and only if m^3/(m+1) < 10^k. A necessary condition for this is that m - 1/2 > 10^(k/2), i.e. the first digit after the decimal point in 10^(k/2) is at least 5. Is this sufficient as well as necessary? - Robert Israel, Aug 31 2015
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..400
EXAMPLE
32^3=32768, which starts with 32.
MATHEMATICA
Join[{0}, Sort[ Table[ 10^i, {i, 0, 22} ]~Join~Select[ Table[ Ceiling[ Sqrt[ 10 ]*10^i ], {i, 0, 22} ], Take[ IntegerDigits[ #^3 ], Length[ IntegerDigits[ # ] ] ]==IntegerDigits[ # ]& ] ] ]
PROG
(PARI) r=29; print1(1, ", "); e=3; for(n=2, r, p=round((10^(1/(e-1)))^n); f=p^e; b=10^(#Str(f)-#Str(p)); if((f-lift(Mod(f, b)))/b==p, print1(p, ", "))); \\ Arkadiusz Wesolowski, Dec 10 2013
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Erich Friedman, Jan 29 2000
EXTENSIONS
0 inserted by Juhani Heino, Aug 31 2015
STATUS
approved