|
|
A084818
|
|
Least integers that satisfy sum(n>0,1/a(n)^z)=0, where a(1)=1, a(n+1)>a(n) and z=I/log(3).
|
|
7
|
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Sequence satisfies sum(n>0,1/a(n)^z)=0 by requiring that the modulus of the successive partial sums are monotonically decreasing in magnitude for the given z.
|
|
LINKS
|
Table of n, a(n) for n=1..8.
|
|
PROG
|
(PARI) S=0; w=1; a=0; for(n=1, 100, b=a+1; while(abs(S+exp(-z*log(b)))>w, b++); S=S+exp(-z*log(b)); w=abs(S); a=b; print1(b, ", "))
|
|
CROSSREFS
|
Cf. A084812-A084817.
Sequence in context: A024933 A198646 A052210 * A264286 A120969 A265374
Adjacent sequences: A084815 A084816 A084817 * A084819 A084820 A084821
|
|
KEYWORD
|
more,nonn
|
|
AUTHOR
|
Paul D. Hanna, Jun 04 2003
|
|
STATUS
|
approved
|
|
|
|