OFFSET
1,1
COMMENTS
If 13 is considered as an 'unlucky' number: the 'unlucky years'.
REFERENCES
The Guardian Weekly, July 25-31, 2008, p.39 puzzles 5., p31.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000
Wolfdieter Lang, a(n) up to 3000
Eric Weisstein's World of Mathematics, Triskaidekaphobia
Wikipedia, Triskaidekaphobia
FORMULA
digitsum(a(n))=13, ordered increasingly.
EXAMPLE
2029 is the next 'unlucky year'. Solution to the guardian weekly puzzle.
a(10^ 1) = 166
a(10^ 2) = 1309
a(10^ 3) = 21370
a(10^ 4) = 1100254
a(10^ 5) = 111032122
a(10^ 6) = 30611101000
a(10^ 7) = 40100300100301
a(10^ 8) = 200011001012211010
a(10^ 9) = 10001220000100012002100
a(10^10) = 1100000001010021010000000230 - David A. Corneth, Jan 31 2015
MATHEMATICA
f[n_] := Rest@ Select[Range@ n, NestWhile[Plus @@ IntegerDigits[#] &, #, # > 14 &] == 13 &]; f@ 652 (* Michael De Vlieger, Feb 03 2015 *)
Select[Range[700], Total[IntegerDigits[#]]==13&] (* Harvey P. Dale, Oct 11 2017 *)
PROG
(Haskell)
a143164 n = a143164_list !! (n-1)
a143164_list = filter ((== 13) . a007953) [0..]
-- Reinhard Zumkeller, Jul 17 2014
(PARI)
\\This algorithm needs a modified binomial.
C(n, k)=if(n>=k, binomial(n, k), 0)
\\ways to roll s-q with q dice having sides 0 through n - 1.
b(s, q, n)=if(s<=q*(n-1), s+=q; sum(i=0, q-1, (-1)^i*C(q, i)*C(s-1-n*i, q-1)), 0)
\\main algorithm
a(n) = {my(q); q = 2; while(b(13, q, 10) < n, q++); q--; s = 13; os = 13; r=0; while(q, if(b(s, q, 10) < n, n-=b(s, q, 10); s--, r+=(os-s)*10^(q); os = s; q--)); r+= s; r}
\\inverse
inv(n)={r = 1; v=digits(n); l=v[#v]; forstep(i = #v-1, 1, -1, for(j=1, v[i], r+=b(l+j, #v-i, 10)); l+=v[i]); r} \\ David A. Corneth, Jan 31 2015
(PARI) transform(n, b)=my(d=digits(n), nd=#d, v=vector(b, i, [i\10, b-(b+1-i)\10]), k); v[b][2]=d[1]; v
list(lim)=my(v=List(), d=transform(lim\=1, 13)); forvec(u=transform(lim\1, 13), if(u[4]<u[10] || (u[1]<u[10] && u[2]<u[11] && u[3]<u[12] && u[4]<u[13]), my(s=sum(i=1, 13, 10^u[i])); if(s<=lim, listput(v, s))), 1); Set(v) \\ Charles R Greathouse IV, May 30 2019
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Wolfdieter Lang, Sep 15 2008
STATUS
approved