|
|
A052224
|
|
Numbers whose sum of digits is 10.
|
|
52
|
|
|
19, 28, 37, 46, 55, 64, 73, 82, 91, 109, 118, 127, 136, 145, 154, 163, 172, 181, 190, 208, 217, 226, 235, 244, 253, 262, 271, 280, 307, 316, 325, 334, 343, 352, 361, 370, 406, 415, 424, 433, 442, 451, 460, 505, 514, 523, 532, 541, 550, 604, 613, 622, 631, 640
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The number of terms having <= m digits is the coefficient of x^10 in sum(i=0,9,x^i)^m = ((1-x^10)/(1-x))^m. - David A. Corneth, Jun 04 2016
In general, the set of numbers with sum of base-b digits equal to b is a subset of { (b-1)*k + 1; k = 2, 3, 4, ... }. - M. F. Hasler, Dec 23 2016
|
|
LINKS
|
|
|
FORMULA
|
|
|
MAPLE
|
sd := proc (n) options operator, arrow: add(convert(n, base, 10)[j], j = 1 .. nops(convert(n, base, 10))) end proc: a := proc (n) if sd(n) = 10 then n else end if end proc: seq(a(n), n = 1 .. 800); # Emeric Deutsch, Jan 16 2009
|
|
MATHEMATICA
|
Union[Flatten[Table[FromDigits /@ Permutations[PadRight[s, 7]], {s, Rest[IntegerPartitions[10]]}]]] (* T. D. Noe, Mar 08 2013 *)
Select[Range[1000], Total[IntegerDigits[#]] == 10 &] (* Vincenzo Librandi, Mar 10 2013 *)
|
|
PROG
|
(Haskell)
a052224 n = a052224_list !! (n-1)
a052224_list = filter ((== 10) . a007953) [0..]
(PARI) isok(n) = sumdigits(n) == 10; \\ Michel Marcus, Dec 28 2015
(PARI) \\ This algorithm needs a modified binomial.
C(n, k)=if(n>=k, binomial(n, k), 0)
\\ ways to roll s-q with q dice having sides 0 through n - 1.
b(s, q, n)=if(s<=q*(n-1), s+=q; sum(i=0, q-1, (-1)^i*C(q, i)*C(s-1-n*i, q-1)), 0)
\\ main algorithm; this program applies to all sequences of the form "Numbers whose sum of digits is m."
a(n, {m=10}) = {my(q); q = 2; while(b(m, q, 10) < n, q++); q--; s = m; os = m; r=0; while(q, if(b(s, q, 10) < n, n-=b(s, q, 10); s--, r+=(os-s)*10^(q); os = s; q--)); r+= s; r}
(Python)
from sympy.utilities.iterables import multiset_permutations
def auptodigs(maxdigits, b=10, sod=10): # works for any base, sum-of-digits
alst = [sod] if 0 <= sod < b else []
nzdigs = [i for i in range(1, b) if i <= sod]
nzmultiset = []
for d in range(1, b):
nzmultiset += [d]*(sod//d)
for d in range(2, maxdigits + 1):
fullmultiset = [0]*(d-1-(sod-1)//(b-1)) + nzmultiset
for firstdig in nzdigs:
target_sum, restmultiset = sod - int(firstdig), fullmultiset[:]
restmultiset.remove(firstdig)
for p in multiset_permutations(restmultiset, d-1):
if sum(p) == target_sum:
alst.append(int("".join(map(str, [firstdig]+p)), b))
if p[0] == target_sum:
break
return alst
(Python)
"""Return a generator of the sequence of all integers >= N with the same
digit sum as N."""
while True:
yield N
N = A228915(N) # skip to next larger integer with the same digit sum
|
|
CROSSREFS
|
Cf. A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|