The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A243994 Consider a decimal number of k>=2 digits x = d_(k)*10^(k-1) + d_(k-1)*10^(k-2) + … + d_(2)*10 + d_(1) and the transform T(x)-> (d_(k)+d_(k-1) mod 10)*10^(k-1) + (d_(k-1)+d_(k-2) mod 10)*10^(k-2) + … + (d_(2)+d_(1) mod 10)*10 + (d_(1)+d(k) mod 10). Sequence lists the numbers x such that T(x)=0. 3
19, 28, 37, 46, 55, 64, 73, 82, 91, 191, 282, 373, 464, 555, 646, 737, 828, 919, 1919, 2828, 3737, 4646, 5555, 6464, 7373, 8282, 9191, 19191, 28282, 37373, 46464, 55555, 64646, 73737, 82828, 91919, 191919, 282828, 373737, 464646, 555555, 646464, 737373, 828282 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
FORMULA
Empirical g.f.: -x*(90*x^17 -100*x^16 +90*x^15 -100*x^14 +90*x^13 -100*x^12 +90*x^11 -100*x^10 +90*x^9 -19*x^8 +10*x^7 -19*x^6 +10*x^5 -19*x^4 +10*x^3 -19*x^2 +10*x -19) / ((x -1)*(x^2 -x +1)*(x^6 -x^3 +1)*(10*x^9 -1)). - Colin Barker, Jun 17 2014
EXAMPLE
For 19 we have (1+9) mod 10 = 10 mod 10 = 0 and (9+1) mod 10 = 10 mod 10 = 0.
All the terms are created by concatenating the elements of the following sets of digits only with themselves: {1,9}, {2,8}, {3,7}, {4,6}, {5}.
MAPLE
P:=proc(q) local a, b, c, j, n;
for n from 10 to q do a:=[]; b:=n; while b>0 do a:=[b mod 10, op(a)];
b:=trunc(b/10); od; b:=0; c:=0; b:=(c[nops(c)]+c[1]) mod 10;
for j from 1 to nops(a)-1 do c:=c*10+((a[j]+a[j+1]) mod 10); od; c:=c*10+b;
if c=0 then print(n); fi; od; end: P(10^10);
CROSSREFS
Cf. A243993.
Sequence in context: A094677 A052224 A179955 * A083678 A279771 A257043
KEYWORD
nonn,easy,base
AUTHOR
Paolo P. Lava, Jun 17 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 17:32 EDT 2024. Contains 373391 sequences. (Running on oeis4.)