The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A243994 Consider a decimal number of k>=2 digits x = d_(k)*10^(k-1) + d_(k-1)*10^(k-2) + … + d_(2)*10 + d_(1) and the transform T(x)-> (d_(k)+d_(k-1) mod 10)*10^(k-1) + (d_(k-1)+d_(k-2) mod 10)*10^(k-2) + … + (d_(2)+d_(1) mod 10)*10 + (d_(1)+d(k) mod 10). Sequence lists the numbers x such that T(x)=0. 3
 19, 28, 37, 46, 55, 64, 73, 82, 91, 191, 282, 373, 464, 555, 646, 737, 828, 919, 1919, 2828, 3737, 4646, 5555, 6464, 7373, 8282, 9191, 19191, 28282, 37373, 46464, 55555, 64646, 73737, 82828, 91919, 191919, 282828, 373737, 464646, 555555, 646464, 737373, 828282 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Table of n, a(n) for n=1..44. FORMULA Empirical g.f.: -x*(90*x^17 -100*x^16 +90*x^15 -100*x^14 +90*x^13 -100*x^12 +90*x^11 -100*x^10 +90*x^9 -19*x^8 +10*x^7 -19*x^6 +10*x^5 -19*x^4 +10*x^3 -19*x^2 +10*x -19) / ((x -1)*(x^2 -x +1)*(x^6 -x^3 +1)*(10*x^9 -1)). - Colin Barker, Jun 17 2014 EXAMPLE For 19 we have (1+9) mod 10 = 10 mod 10 = 0 and (9+1) mod 10 = 10 mod 10 = 0. All the terms are created by concatenating the elements of the following sets of digits only with themselves: {1,9}, {2,8}, {3,7}, {4,6}, {5}. MAPLE P:=proc(q) local a, b, c, j, n; for n from 10 to q do a:=[]; b:=n; while b>0 do a:=[b mod 10, op(a)]; b:=trunc(b/10); od; b:=0; c:=0; b:=(c[nops(c)]+c[1]) mod 10; for j from 1 to nops(a)-1 do c:=c*10+((a[j]+a[j+1]) mod 10); od; c:=c*10+b; if c=0 then print(n); fi; od; end: P(10^10); CROSSREFS Cf. A243993. Sequence in context: A094677 A052224 A179955 * A083678 A279771 A257043 Adjacent sequences: A243991 A243992 A243993 * A243995 A243996 A243997 KEYWORD nonn,easy,base AUTHOR Paolo P. Lava, Jun 17 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 17:32 EDT 2024. Contains 373391 sequences. (Running on oeis4.)