The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A243996 Numbers n such that phi(sigma*(n)) = sigma*(phi(n)), where sigma*(n) is the sum of anti-divisors of n and phi(n) is the Euler totient function. 1
7, 9, 20, 25, 80, 143, 825, 3117, 3216, 22774, 52026, 55804, 138276, 187733, 228384, 265545, 320766, 549540, 830814, 839784, 901376, 1293552, 1315776, 2635866, 6771114, 11126800, 12087848, 24351460, 49382242, 52344292, 60063744, 65980038, 78279016, 97638080 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
a(70) > 10^10. - Hiroaki Yamanouchi, Sep 28 2015
LINKS
Hiroaki Yamanouchi, Table of n, a(n) for n = 1..69
EXAMPLE
sigma*(phi(25)) = sigma*(20) = 24, phi(sigma*(25)) = phi(39) = 24.
MAPLE
with(numtheory): P:=proc(q) local a, b, c, d, j, k, n;
for n from 1 to q do
k:=0; j:=n; while j mod 2<>1 do k:=k+1; j:=j/2; od;
a:=sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2;
k:=0; c:=phi(n); j:=phi(n); while j mod 2<>1 do k:=k+1; j:=j/2; od;
b:=sigma(2*c+1)+sigma(2*c-1)+sigma(c/2^k)*2^(k+1)-6*c-2;
if b=phi(a) then print(n); fi; od; end: P(10^10);
MATHEMATICA
antiDivisors[n_] := Select[ Union[ Join[ Select[ Divisors[2 n - 1], OddQ[#] && # != 1 &], Select[ Divisors[ 2n + 1], OddQ[#] && # != 1 &], 2n/Select[ Divisors[ 2n], OddQ[#] && # != 1 &]]], # < n &]; fQ[n_] := EulerPhi@ Total@ antiDivisors@ n == Total@ antiDivisors@ EulerPhi@ n; k = 3; lst = {}; While[k < 10000001, If[ fQ@ k, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Jun 21 2014 *)
CROSSREFS
Sequence in context: A103853 A192160 A139202 * A125968 A147068 A147012
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Jun 18 2014
EXTENSIONS
a(22)-a(25) from Robert G. Wilson v, Jun 21 2014
a(26)-a(34) from Hiroaki Yamanouchi, Sep 28 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 03:50 EDT 2024. Contains 373432 sequences. (Running on oeis4.)