login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243996
Numbers n such that phi(sigma*(n)) = sigma*(phi(n)), where sigma*(n) is the sum of anti-divisors of n and phi(n) is the Euler totient function.
1
7, 9, 20, 25, 80, 143, 825, 3117, 3216, 22774, 52026, 55804, 138276, 187733, 228384, 265545, 320766, 549540, 830814, 839784, 901376, 1293552, 1315776, 2635866, 6771114, 11126800, 12087848, 24351460, 49382242, 52344292, 60063744, 65980038, 78279016, 97638080
OFFSET
1,1
COMMENTS
a(70) > 10^10. - Hiroaki Yamanouchi, Sep 28 2015
LINKS
Hiroaki Yamanouchi, Table of n, a(n) for n = 1..69
EXAMPLE
sigma*(phi(25)) = sigma*(20) = 24, phi(sigma*(25)) = phi(39) = 24.
MAPLE
with(numtheory): P:=proc(q) local a, b, c, d, j, k, n;
for n from 1 to q do
k:=0; j:=n; while j mod 2<>1 do k:=k+1; j:=j/2; od;
a:=sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2;
k:=0; c:=phi(n); j:=phi(n); while j mod 2<>1 do k:=k+1; j:=j/2; od;
b:=sigma(2*c+1)+sigma(2*c-1)+sigma(c/2^k)*2^(k+1)-6*c-2;
if b=phi(a) then print(n); fi; od; end: P(10^10);
MATHEMATICA
antiDivisors[n_] := Select[ Union[ Join[ Select[ Divisors[2 n - 1], OddQ[#] && # != 1 &], Select[ Divisors[ 2n + 1], OddQ[#] && # != 1 &], 2n/Select[ Divisors[ 2n], OddQ[#] && # != 1 &]]], # < n &]; fQ[n_] := EulerPhi@ Total@ antiDivisors@ n == Total@ antiDivisors@ EulerPhi@ n; k = 3; lst = {}; While[k < 10000001, If[ fQ@ k, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Jun 21 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Jun 18 2014
EXTENSIONS
a(22)-a(25) from Robert G. Wilson v, Jun 21 2014
a(26)-a(34) from Hiroaki Yamanouchi, Sep 28 2015
STATUS
approved