login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243998
Number T(n,k) of Dyck paths of semilength n with exactly k (possibly overlapping) occurrences of some of the consecutive patterns of Dyck paths of semilength 3; triangle T(n,k), n>=0, 0<=k<=max(0,n-2), read by rows.
2
1, 1, 2, 0, 5, 1, 11, 2, 1, 33, 7, 1, 4, 90, 30, 7, 1, 11, 245, 142, 24, 6, 1, 29, 680, 570, 121, 24, 5, 1, 81, 1884, 2176, 578, 112, 25, 5, 1, 220, 5265, 7935, 2649, 580, 116, 25, 5, 1, 608, 14747, 28022, 11827, 2825, 602, 124, 25, 5, 1
OFFSET
0,3
COMMENTS
The consecutive patterns 101010, 101100, 110010, 110100, 111000 are counted. Here 1=Up=(1,1), 0=Down=(1,-1).
LINKS
EXAMPLE
T(3,1) = 5: 101010, 101100, 110010, 110100, 111000.
T(4,0) = 1: 11001100.
T(4,2) = 2: 10101010, 10110010.
T(5,0) = 1: 1110011000.
T(6,3) = 7: 101010101100, 101010110010, 101100101010, 101100101100, 110010101010, 110010110010, 110101010100.
Triangle T(n,k) begins:
: 0 : 1;
: 1 : 1;
: 2 : 2;
: 3 : 0, 5;
: 4 : 1, 11, 2;
: 5 : 1, 33, 7, 1;
: 6 : 4, 90, 30, 7, 1;
: 7 : 11, 245, 142, 24, 6, 1;
: 8 : 29, 680, 570, 121, 24, 5, 1;
: 9 : 81, 1884, 2176, 578, 112, 25, 5, 1;
: 10 : 220, 5265, 7935, 2649, 580, 116, 25, 5, 1;
MAPLE
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, expand(add(b(x-1, y-1+2*j, irem(2*t+j, 32))*
`if`(2*t+j in {42, 44, 50, 52, 56}, z, 1), j=0..1))))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 0)):
seq(T(n), n=0..14);
MATHEMATICA
b[x_, y_, t_] := b[x, y, t] = If[y < 0 || y > x, 0,
If[x == 0, 1, Expand[Sum[b[x-1, y-1 + 2j, Mod[2t+j, 32]]*
Switch[2t+j, 42|44|50|52|56, z, _, 1], {j, 0, 1}]]]];
T[n_] := CoefficientList[b[2n, 0, 0], z];
Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Apr 30 2022, after Alois P. Heinz *)
CROSSREFS
Column k=0 gives A243986.
Row sums give A000108.
Sequence in context: A370896 A307438 A198926 * A290395 A082974 A167635
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Jun 17 2014
STATUS
approved