

A198926


Decimal expansion of x>0 satisfying 3*x^2cos(x)=4.


2



1, 2, 0, 5, 1, 9, 8, 1, 8, 1, 7, 7, 5, 4, 6, 5, 2, 5, 7, 6, 8, 6, 1, 0, 3, 9, 7, 5, 4, 9, 5, 2, 8, 2, 7, 6, 5, 0, 4, 3, 3, 1, 4, 1, 5, 9, 2, 2, 6, 4, 2, 8, 1, 2, 4, 9, 8, 7, 7, 2, 4, 5, 2, 0, 9, 9, 6, 1, 1, 6, 4, 4, 4, 5, 0, 5, 4, 7, 3, 6, 0, 3, 5, 7, 4, 7, 0, 7, 5, 5, 3, 0, 2, 7, 7, 1, 8, 1, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

See A198755 for a guide to related sequences. The Mathematica program includes a graph.


LINKS

Table of n, a(n) for n=1..99.


EXAMPLE

x=1.20519818177546525768610397549528276504331...


MATHEMATICA

a = 3; b = 1; c = 4;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c
Plot[{f[x], g[x]}, {x, 2, 2}, {AxesOrigin > {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 1.2, 1.3}, WorkingPrecision > 110]
RealDigits[r] (* A198926 *)


CROSSREFS

Cf. A198755.
Sequence in context: A177267 A188445 A246723 * A243998 A082974 A167635
Adjacent sequences: A198923 A198924 A198925 * A198927 A198928 A198929


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 31 2011


STATUS

approved



