login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A167635
Number of Dyck paths of semilength n, having no ascents and no descents of length 1, and having no peaks at odd level.
2
1, 0, 1, 0, 2, 0, 5, 1, 14, 7, 43, 36, 143, 166, 509, 731, 1915, 3158, 7523, 13560, 30537, 58257, 127029, 251266, 538253, 1089666, 2313121, 4754148, 10051130, 20868070, 44065633, 92132176, 194617333, 408971295, 864899013, 1824485600, 3864369141
OFFSET
0,5
COMMENTS
a(n)=A167634(n,0).
FORMULA
G.f.: G = [1 + 2z - z^3 - sqrt(1 - 4z^2 - 2z^3 + z^6)]/[2z(1 + z - z^2)].
D-finite with recurrence (n+1)*a(n) +a(n-1) +(-4*n+5)*a(n-2) +(-2*n+7)*a(n-3) +3*a(n-4) +a(n-5) +(n-6)*a(n-6)=0. - R. J. Mathar, Jul 26 2022
EXAMPLE
a(6)=5 because we have UUDDUUDDUUDD, UUDDUUUUDDDD, UUUUDDDDUUDD, UUUUDDUUDDDD, and UUUUUUDDDDDD.
MAPLE
G := ((1+2*z-z^3-sqrt(1-4*z^2-2*z^3+z^6))*1/2)/(z*(1+z-z^2)): Gser := series(G, z = 0, 40): seq(coeff(Gser, z, n), n = 0 .. 38);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Nov 08 2009
STATUS
approved