The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A264357 Array A(r, n) of number of independent components of a symmetric traceless tensor of rank r and dimension n, written as triangle T(n, r) = A(r, n-r+2), n >= 1, r = 2..n+1. 3
 0, 2, 0, 5, 2, 0, 9, 7, 2, 0, 14, 16, 9, 2, 0, 20, 30, 25, 11, 2, 0, 27, 50, 55, 36, 13, 2, 0, 35, 77, 105, 91, 49, 15, 2, 0, 44, 112, 182, 196, 140, 64, 17, 2, 0, 54, 156, 294, 378, 336, 204, 81, 19, 2, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A (totally) symmetric traceless tensor of rank r >= 2 and dimension n >= 1 is irreducible. The array of the number of independent components of a rank r symmetric traceless tensor A(r, n), for r >= 2 and n >=1, is given by risefac(n,r)/r! - risefac(n,r-2)/(r-2)!, where the first term gives the number of independent components of a symmetric tensors of rank r (see a Dec 10 2015 comment under A135278) and the second term is the number of constraints from the tracelessness requirement. The tensor has to be traceless in each pair of indices. The first rows of the array A, or the first columns (without the first r-2 zeros) of the triangle T are for r = 2..6: A000096, A005581, A005582, A005583, A005584. LINKS FORMULA T(n, r) = A(r, n-r+2) with the array A(r, n) = risefac(n,r)/r! - risefac(n,r-2)/(r-2)! where the rising factorial risefac(n,k) = Product_{j=0..k-1} (n+j) and risefac(n,0) = 1. From Peter Luschny, Dec 14 2015: (Start) A(n+2, n+1) = A007946(n-1) = CatalanNumber(n)*3*n*(n+1)/(n+2) for n>=0. A(n+2, n+2) = A024482(n+2) = A097613(n+2) = CatalanNumber(n+1)*(3*n+4)/2 for n>=0. A(n+2, n+3) = A051960(n+1) = CatalanNumber(n+1)*(3*n+5) for n>=0. A(n+2, n+4) = A029651(n+2) = CatalanNumber(n+1)*(6*n+9) for n>=0. A(n+2, n+5) = A051924(n+3) = CatalanNumber(n+2)*(3*n+7) for n>=0. A(n+2, n+6) = A129869(n+4) = CatalanNumber(n+2)*(3*n+8)*(2*n+5)/(n+4) for n>=0. A(n+2, n+7) = A220101(n+4) = CatalanNumber(n+3)*(3*(n+3)^2)/(n+5) for n>=0. A(n+2, n+8) = CatalanNumber(n+4)*(n+3)*(3*n+10)/(2*n+12) for n>=0. Let for n>=0 and k>=0 diag(n,k) = A(k+2,n+k+1) and G(n,k) = 2^(k+2*n)*Gamma((3-(-1)^k+2*k+4*n)/4)/(sqrt(Pi)*Gamma(k+n+0^k)) then diag(n,0) = G(n,0)*(n*3)/(n+2), diag(n,1) = G(n,1)*(3*n+4)/((n+1)*(n+2)), diag(n,2) = G(n,2)*(3*n+5)/(n+2), diag(n,3) = G(n,3)*3, diag(n,4) = G(n,4)*(3*n+7), diag(n,5) = G(n,5)*(3*n+8), diag(n,6) = G(n,6)*3*(3+n)^2, diag(n,7) = G(n,7)*(3+n)*(10+3*n). (End) EXAMPLE The array A(r, n) starts:    r\n 1 2  3   4   5    6    7     8     9    10 ...    2:  0 2  5   9  14   20   27    35    44    54    3:  0 2  7  16  30   50   77   112   156   210    4:  0 2  9  25  55  105  182   294   450   660    5:  0 2 11  36  91  196  378   672  1122  1782    6:  0 2 13  49 140  336  714  1386  2508  4290    7:  0 2 15  64 204  540 1254  2640  5148  9438    8:  0 2 17  81 285  825 2079  4719  9867 19305    9:  0 2 19 100 385 1210 3289  8008 17875 37180   10:  0 2 21 121 506 1716 5005 13013 30888 68068   ... The triangle T(n, r) starts:    n\r  2   3   4   5   6   7  8  9 10 11 ...    1:   0    2:   2   0    3:   5   2   0    4:   9   7   2   0    5:  14  16   9   2   0    6:  20  30  25  11   2   0    7:  27  50  55  36  13   2  0    8:  35  77 105  91  49  15  2  0    9:  44 112 182 196 140  64 17  2  0   10:  54 156 294 378 336 204 81 19  2  0   ... A(r, 1) = 0 , r >= 2, because a symmetric rank r tensor t of dimension one has one component t(1,1,...,1) (r 1's) and if the traces vanish then t vanishes. A(3, 2) = 2 because a symmetric rank 3 tensor t with three indices taking values from 1 or 2 (n=2) has the four independent components t(1,1,1), t(1,1,2), t(1,2,2), t(2,2,2), and (invoking symmetry) the vanishing traces are Sum_{j=1..2} t(j,j,1) = 0 and Sum_{j=1..2} t(j,j,2) = 0. These are two constraints, which can be used to eliminate, say, t(1,1,1) and t(2,2,2), leaving 2 = A(3, 2) independent components, say, t(1,1,2) and t(1,2,2). From Peter Luschny, Dec 14 2015: (Start) The diagonals diag(n, k) start:    k\n  0       1       2       3       4      5       6    0:   0,      2,      9,     36,    140,   540,   2079, ... A007946    1:   2,      7,     25,     91,    336,  1254,   4719, ... A097613    2:   5,     16,     55,    196,    714,  2640,   9867, ... A051960    3:   9,     30,    105,    378,   1386,  5148,  19305, ... A029651    4:  14,     50,    182,    672,   2508,  9438,  35750, ... A051924    5:  20,     77,    294,   1122,   4290, 16445,  63206, ... A129869    6:  27,    112,    450,   1782,   7007, 27456, 107406, ... A220101    7:  35,    156,    660,   2717,  11011, 44200, 176358, ... A265612    8:  44,    210,    935,    4004, 16744, 68952, 281010, ... A265613 (End) MATHEMATICA A[r_, n_] := Pochhammer[n, r]/r! - Pochhammer[n, r-2]/(r-2)!; T[n_, r_] := A[r, n-r+2]; Table[T[n, r], {n, 1, 10}, {r, 2, n+1}] (* Jean-François Alcover, Jun 28 2019 *) PROG (Sage) A = lambda r, n: rising_factorial(n, r)/factorial(r) - rising_factorial(n, r-2)/factorial(r-2) for r in (2..10): [A(r, n) for n in (1..10)] # Peter Luschny, Dec 13 2015 CROSSREFS Cf. A000096, A005581, A005582, A005583, A005584, A007946, A024482, A029651, A051924, A051960, A097613, A129869, A135278, A220101, A265612, A265613. Sequence in context: A167635 A192426 A075603 * A221573 A332453 A066283 Adjacent sequences:  A264354 A264355 A264356 * A264358 A264359 A264360 KEYWORD nonn,easy,tabl AUTHOR Wolfdieter Lang, Dec 10 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 22 20:16 EDT 2021. Contains 345388 sequences. (Running on oeis4.)