login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052226
Partial sums of A050404.
3
1, 15, 92, 372, 1170, 3102, 7260, 15444, 30459, 56485, 99528, 167960, 273156, 430236, 658920, 984504, 1438965, 2062203, 2903428, 4022700, 5492630, 7400250, 9849060, 12961260, 16880175, 21772881, 27833040, 35283952, 44381832, 55419320, 68729232, 84688560, 103722729, 126310119
OFFSET
0,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
FORMULA
a(n) = (8*n+7)*C(n+6, 6)/7.
G.f.: (1+7*x)/(1-x)^8.
E.g.f.: (5040 +70560*x +158760*x^2 +117600*x^3 +36750*x^4 +5292*x^5 +343*x^6 +8*x^7)*exp(x)/5040. - G. C. Greubel, Aug 29 2019
MAPLE
seq((8*n+7)*Binomial(n+6, 6)/7, n=0..40); # G. C. Greubel, Aug 29 2019
MATHEMATICA
Table[(8*n+7)*Binomial[n+6, 6]/7, {n, 0, 40}] (* G. C. Greubel, Aug 29 2019 *)
LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {1, 15, 92, 372, 1170, 3102, 7260, 15444}, 40] (* Harvey P. Dale, Aug 12 2021 *)
PROG
(PARI) vector(40, n, (8*n-1)*binomial(n+5, 6)/7) \\ G. C. Greubel, Aug 29 2019
(Magma) [(8*n+7)*Binomial(n+6, 6)/7: n in [0..40]]; // G. C. Greubel, Aug 29 2019
(Sage) [(8*n+7)*binomial(n+6, 6)/7 for n in (0..40)] # G. C. Greubel, Aug 29 2019
(GAP) List([0..40], n-> (8*n+7)*Binomial(n+6, 6)/7); # G. C. Greubel, Aug 29 2019
CROSSREFS
Cf. A050404.
Cf. A093565 ((8, 1) Pascal, column m=7).
Sequence in context: A180248 A329759 A041428 * A108684 A125325 A126483
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jan 29 2000
EXTENSIONS
Terms a(25) onward added by G. C. Greubel, Aug 29 2019
STATUS
approved