OFFSET
0,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
FORMULA
a(n) = (8*n+7)*C(n+6, 6)/7.
G.f.: (1+7*x)/(1-x)^8.
E.g.f.: (5040 +70560*x +158760*x^2 +117600*x^3 +36750*x^4 +5292*x^5 +343*x^6 +8*x^7)*exp(x)/5040. - G. C. Greubel, Aug 29 2019
MAPLE
seq((8*n+7)*Binomial(n+6, 6)/7, n=0..40); # G. C. Greubel, Aug 29 2019
MATHEMATICA
Table[(8*n+7)*Binomial[n+6, 6]/7, {n, 0, 40}] (* G. C. Greubel, Aug 29 2019 *)
LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {1, 15, 92, 372, 1170, 3102, 7260, 15444}, 40] (* Harvey P. Dale, Aug 12 2021 *)
PROG
(PARI) vector(40, n, (8*n-1)*binomial(n+5, 6)/7) \\ G. C. Greubel, Aug 29 2019
(Magma) [(8*n+7)*Binomial(n+6, 6)/7: n in [0..40]]; // G. C. Greubel, Aug 29 2019
(Sage) [(8*n+7)*binomial(n+6, 6)/7 for n in (0..40)] # G. C. Greubel, Aug 29 2019
(GAP) List([0..40], n-> (8*n+7)*Binomial(n+6, 6)/7); # G. C. Greubel, Aug 29 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jan 29 2000
EXTENSIONS
Terms a(25) onward added by G. C. Greubel, Aug 29 2019
STATUS
approved