login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143161
Expansion of chi(-x)^2 * chi(-x^2) in powers of x where chi() is a Ramanujan theta function.
4
1, -2, 0, 0, 3, -2, 0, 0, 4, -6, 0, 0, 7, -8, 0, 0, 13, -14, 0, 0, 19, -20, 0, 0, 29, -34, 0, 0, 43, -46, 0, 0, 62, -70, 0, 0, 90, -96, 0, 0, 126, -138, 0, 0, 174, -186, 0, 0, 239, -262, 0, 0, 325, -346, 0, 0, 435, -472, 0, 0, 580, -620, 0, 0, 769, -826, 0, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/6) * eta(q)^2 / (eta(q^2) * eta(q^4)) in powers of q.
Euler transform of period 4 sequence [ -2, -1, -2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (576 t)) = 8^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A098613. - Michael Somos, Sep 07 2015
a(4*n + 2) = a(4*n + 3) = 0.
G.f.: (Product_{k>0} (1 + x^k)^2 * (1 + x^(2*k)))^-1.
a(4*n) = A029552(n). a(4*n + 1) = -2 * A098613(n).
EXAMPLE
G.f. = 1 - 2*x + 3*x^4 - 2*x^5 + 4*x^8 - 6*x^9 + 7*x^12 - 8*x^13 + 13*x^16 + ...
G.f. = 1/q - 2*q^5 + 3*q^23 - 2*q^29 + 4*q^47 - 6*q^53 + 7*q^71 - 8*q^77 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2]^2 QPochhammer[ x^2, x^4], {x, 0, n}]; (* Michael Somos, Sep 07 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 / (eta(x^2 + A) * eta(x^4 + A)), n))};
CROSSREFS
Sequence in context: A216229 A224777 A259827 * A225853 A342128 A330463
KEYWORD
sign
AUTHOR
Michael Somos, Jul 27 2008
STATUS
approved