login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225853
Expansion of phi(x) / f(-x^4) in powers of x where phi(), f() are Ramanujan theta functions.
1
1, 2, 0, 0, 3, 2, 0, 0, 4, 6, 0, 0, 7, 8, 0, 0, 13, 14, 0, 0, 19, 20, 0, 0, 29, 34, 0, 0, 43, 46, 0, 0, 62, 70, 0, 0, 90, 96, 0, 0, 126, 138, 0, 0, 174, 186, 0, 0, 239, 262, 0, 0, 325, 346, 0, 0, 435, 472, 0, 0, 580, 620, 0, 0, 769, 826, 0, 0, 1007, 1072, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of chi(x)^2 * chi(-x^2) = chi(x)^3 * chi(-x) = chi(-x^2)^3 / chi(-x)^2 in powers of x where chi() is a Ramanujan theta function.
Expansion of q^(1/4) * eta(q^2)^5 / (eta(q)^2 * eta(q^4)^3) in powers of q.
Euler transform of period 4 sequence [ 2, -3, 2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (576 t)) = 2^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A029552.
G.f.: Product_{k>0} (1 - x^(4*k-2))^3 / (1 - x^(2*k-1))^2 = (Sum_{k in Z} x^k^2) / (Product_{k>0} (1 - x^(4*k))).
a(n) = (-1)^n * A143161(n). a(4*n + 2) = a(4*n + 3) = 0.
EXAMPLE
1 + 2*x + 3*x^4 + 2*x^5 + 4*x^8 + 6*x^9 + 7*x^12 + 8*x^13 + 13*x^16 + ...
1/q + 2*q^5 + 3*q^23 + 2*q^29 + 4*q^47 + 6*q^53 + 7*q^71 + 8*q^77 + 13*q^95 + ...
MATHEMATICA
a[n_]:= SeriesCoefficient[EllipticTheta[3, 0, q]/QPochhammer[q^4], {q, 0, n}];
a[n_]:= SeriesCoefficient[QPochhammer[q^2, q^4]^3/QPochhammer[q, q^2]^2, {q, 0, n}];
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 / (eta(x + A)^2 * eta(x^4 + A)^3), n))}
CROSSREFS
Sequence in context: A224777 A259827 A143161 * A342128 A330463 A142886
KEYWORD
nonn
AUTHOR
Michael Somos, May 17 2013
STATUS
approved