login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of phi(x) / f(-x^4) in powers of x where phi(), f() are Ramanujan theta functions.
1

%I #14 Mar 12 2021 22:24:47

%S 1,2,0,0,3,2,0,0,4,6,0,0,7,8,0,0,13,14,0,0,19,20,0,0,29,34,0,0,43,46,

%T 0,0,62,70,0,0,90,96,0,0,126,138,0,0,174,186,0,0,239,262,0,0,325,346,

%U 0,0,435,472,0,0,580,620,0,0,769,826,0,0,1007,1072,0

%N Expansion of phi(x) / f(-x^4) in powers of x where phi(), f() are Ramanujan theta functions.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H G. C. Greubel, <a href="/A225853/b225853.txt">Table of n, a(n) for n = 0..1000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of chi(x)^2 * chi(-x^2) = chi(x)^3 * chi(-x) = chi(-x^2)^3 / chi(-x)^2 in powers of x where chi() is a Ramanujan theta function.

%F Expansion of q^(1/4) * eta(q^2)^5 / (eta(q)^2 * eta(q^4)^3) in powers of q.

%F Euler transform of period 4 sequence [ 2, -3, 2, 0, ...].

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (576 t)) = 2^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A029552.

%F G.f.: Product_{k>0} (1 - x^(4*k-2))^3 / (1 - x^(2*k-1))^2 = (Sum_{k in Z} x^k^2) / (Product_{k>0} (1 - x^(4*k))).

%F a(n) = (-1)^n * A143161(n). a(4*n + 2) = a(4*n + 3) = 0.

%e 1 + 2*x + 3*x^4 + 2*x^5 + 4*x^8 + 6*x^9 + 7*x^12 + 8*x^13 + 13*x^16 + ...

%e 1/q + 2*q^5 + 3*q^23 + 2*q^29 + 4*q^47 + 6*q^53 + 7*q^71 + 8*q^77 + 13*q^95 + ...

%t a[n_]:= SeriesCoefficient[EllipticTheta[3,0,q]/QPochhammer[q^4],{q,0,n}];

%t a[n_]:= SeriesCoefficient[QPochhammer[q^2,q^4]^3/QPochhammer[q,q^2]^2, {q,0,n}];

%o (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 / (eta(x + A)^2 * eta(x^4 + A)^3), n))}

%Y Cf. A029552, A143161.

%K nonn

%O 0,2

%A _Michael Somos_, May 17 2013