login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259827
Expansion of phi(x) * f(-x^12)^3 / f(-x^4) in powers of x where phi(), f() are Ramanujan theta functions.
2
1, 2, 0, 0, 3, 2, 0, 0, 4, 6, 0, 0, 4, 2, 0, 0, 4, 8, 0, 0, 7, 2, 0, 0, 8, 10, 0, 0, 4, 4, 0, 0, 5, 10, 0, 0, 8, 4, 0, 0, 12, 10, 0, 0, 8, 6, 0, 0, 4, 14, 0, 0, 12, 2, 0, 0, 8, 14, 0, 0, 8, 4, 0, 0, 9, 18, 0, 0, 12, 6, 0, 0, 16, 14, 0, 0, 4, 4, 0, 0, 12, 12
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(x) * c(x^4) / (3 * x^(4/3)) in powers of x where phi() is a Ramanujan theta function and c() is a cubic AGM theta function.
Expansion of q^(-4/3) * eta(q^2)^5 * eta(q^12)^3 / (eta(q)^2 * eta(q^4)^3) in powers of q.
Euler transform of period 12 sequence [ 2, -3, 2, 0, 2, -3, 2, 0, 2, -3, 2, -3, ...].
a(4*n + 2) = a(4*n + 3) = 0. a(4*n + 1) = 2 * A259655(n). 6 * a(n) = A259825(3*n + 4).
EXAMPLE
G.f. = 1 + 2*x + 3*x^4 + 2*x^5 + 4*x^8 + 6*x^9 + 4*x^12 + 2*x^13 + ...
G.f. = q^4 + 2*q^7 + 3*q^16 + 2*q^19 + 4*q^28 + 6*q^31 + 4*q^40 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] QPochhammer[ x^12]^3 / QPochhammer[ x^4], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^12 + A)^3 / (eta(x + A)^2 * eta(x^4 + A)^3), n))};
CROSSREFS
Sequence in context: A261115 A216229 A224777 * A143161 A225853 A342128
KEYWORD
nonn
AUTHOR
Michael Somos, Jul 05 2015
STATUS
approved