OFFSET
0,3
LINKS
Robert Israel, Table of n, a(n) for n = 0..10000
FORMULA
Euler transform of period 12 sequence [-1, -2, -2, -3, -1, -3, -1, -3, -2, -2, -1, -4, ...].
G.f.: Product_{k>0} (1 - x^k) * (1 - x^(2*k)) * (1 - x^(3*k)) * (1 - x^(4*k)).
EXAMPLE
G.f. = 1 - x - 2*x^2 + 5*x^5 + x^6 + x^7 - 2*x^8 - 7*x^9 + 4*x^10 - 5*x^11 + ...
G.f. = q^5 - q^17 - 2*q^29 + 5*q^65 + q^77 + q^89 - 2*q^101 - 7*q^113 + ...
MAPLE
N:= 100: # for a(0)..a(N)
g:= mul(1-x^k, k=1..N)*mul(1-x^(2*k), k=1..N/2)*mul(1-x^(3*k), k=1..N/3)*mul(1-x^(4*k), k=1..N/4):
S:= series(g, x, N+1):
seq(coeff(S, x, n), n=0..N); # Robert Israel, Feb 08 2018
MATHEMATICA
a[ n_] := SeriesCoefficient[ 2^(-1/2) x^(-1/8) QPochhammer[ x^2]^2 EllipticTheta[ 2, Pi/4, x^(1/2)] QPochhammer[ x^3], {x, 0, n}]; (* Michael Somos, Sep 07 2015 *)
a[ n_] := SeriesCoefficient[ 2^(-1) x^(-1/4) QPochhammer[ -x] EllipticTheta[ 2, Pi/4, x^(1/2)]^2 QPochhammer[ x^3], {x, 0, n}]; (* Michael Somos, Sep 07 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A) * eta(x^3 + A) * eta(x^4 + A), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jul 27 2008
STATUS
approved