login
A370065
Triangle read by rows: T(n,k) is the number of simple graphs on n labeled nodes with k articulation vertices, (0 <= k <= n).
2
1, 1, 0, 2, 0, 0, 5, 3, 0, 0, 24, 28, 12, 0, 0, 334, 390, 240, 60, 0, 0, 13262, 10776, 6090, 2280, 360, 0, 0, 1106862, 615860, 255570, 92820, 23520, 2520, 0, 0, 175376048, 66625504, 19275424, 5446560, 1429680, 262080, 20160, 0, 0, 52257938968, 13210716600, 2592577512, 520122456, 112145040, 22649760, 3144960, 181440, 0, 0
OFFSET
0,4
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
S. Selkow, The enumeration of labeled graphs by number of cutpoints, Discr. Math. 185 (1998), 183-191.
FORMULA
Exponential transform of A370064.
T(n+2, n) = A188588(n + 1).
EXAMPLE
Triangle begins:
1;
1, 0;
2, 0, 0;
5, 3, 0, 0;
24, 28, 12, 0, 0;
334, 390, 240, 60, 0, 0;
13262, 10776, 6090, 2280, 360, 0, 0;
1106862, 615860, 255570, 92820, 23520, 2520, 0, 0;
...
PROG
(PARI) \\ Needs G, J defined in A370064.
T(n)={my(v=Vec( ((y-1)*x + serreverse(x/((1-y) + y*exp(G(n)))))/y ), w=Vec(serlaplace(exp(sum(k=1, n, Polrev(J(v[k], k), y)*x^k, O(x*x^n)) )))); vector(#w, n, Vecrev(w[n], n))}
{ my(A=T(8)); for(i=1, #A, print(A[i])) }
CROSSREFS
Row sums are A006125.
Column k=0 is A370066.
Cf. A188588, A370064 (connected).
Sequence in context: A143160 A369730 A156387 * A324040 A340116 A361521
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Feb 25 2024
STATUS
approved