login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370064
Triangle read by rows: T(n,k) is the number of simple connected graphs on n labeled nodes with k articulation vertices, (0 <= k <= n).
6
1, 1, 0, 1, 0, 0, 1, 3, 0, 0, 10, 16, 12, 0, 0, 238, 250, 180, 60, 0, 0, 11368, 8496, 4560, 1920, 360, 0, 0, 1014888, 540568, 211680, 75600, 21000, 2520, 0, 0, 166537616, 61672192, 17186624, 4663680, 1226400, 241920, 20160, 0, 0, 50680432112, 12608406288, 2416430016, 469336896, 98431200, 20109600, 2963520, 181440, 0, 0
OFFSET
0,8
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
S. Selkow, The enumeration of labeled graphs by number of cutpoints, Discr. Math. 185 (1998), 183-191.
FORMULA
T(n, n-2) = n!/2 = A001710(n) for n >= 2.
EXAMPLE
Triangle begins:
1;
1, 0;
1, 0, 0;
1, 3, 0, 0;
10, 16, 12, 0, 0;
238, 250, 180, 60, 0, 0;
11368, 8496, 4560, 1920, 360, 0, 0;
1014888, 540568, 211680, 75600, 21000, 2520, 0, 0;
...
PROG
(PARI)
J(p, n)={my(u=Vecrev(p, 1+n)); forstep(k=n, 1, -1, u[k] -= k*u[k+1]; u[k]/=n+1-k); u}
G(n)={log(x/serreverse(x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n)))))}
T(n)={my(v=Vec(serlaplace( 1 + ((y-1)*x + serreverse(x/((1-y) + y*exp(G(n)))))/y ))); vector(#v, n, J(v[n], n-1))}
{ my(A=T(7)); for(i=1, #A, print(A[i])) }
CROSSREFS
Columns k=0..3 are A013922(n>1), A013923, A013924, A013925.
Row sums are A001187.
Cf. A001710, A325111 (unlabeled version).
Sequence in context: A363407 A342312 A123474 * A363033 A321711 A277788
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Feb 23 2024
STATUS
approved