login
A277946
Squares whose largest decimal digit is 2.
13
121, 10201, 12100, 22201, 1002001, 1020100, 1022121, 1210000, 1212201, 2220100, 100020001, 100200100, 100220121, 102010000, 102212100, 121000000, 121022001, 121220100, 210221001, 222010000, 10000200001, 10002000100, 10002200121, 10020010000, 10020210201
OFFSET
1,1
COMMENTS
A subsequence of A000290.
From Robert Israel, Nov 14 2016: (Start)
If n is a term, then so is 100*n.
The first term with an even number of digits is a(36) = 100021020121.
The first term with an even number of digits that is not of the form a(36)*100^k has at least 24 digits.
(End)
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms n = 1..50 from Colin Barker, terms n = 51..474 from Robert Israel)
FORMULA
a(n) = A277959(n)^2. Intersection of A000290 and A277964. - M. F. Hasler, Nov 15 2017
MAPLE
res:= NULL: B:= [1, 2]:
for m from 1 to 10 do
for q in B do
for x from ceil(sqrt(10^m*q)) to floor(sqrt(10^m*q + 2/9*(10^m-1))) do
if max(convert(x^2, base, 10)) = 2 then res:= res, x^2 fi
od od:
for q in B do
for x from ceil(sqrt(10^(m+1)*q)) to floor(sqrt(10^(m+1)*q + 2/9*(10^(m+1)-1))) do
if max(convert(x^2, base, 10)) = 2 then res:= res, x^2 fi
od od:
if m < 10 then B:= map(t -> (10*t, 10*t+1, 10*t+2), B) fi;
od:
res; # Robert Israel, Nov 14 2016
MATHEMATICA
fQ[n_] := Union[ IntegerDigits[ n^2]][[-1]] == 2; Select[ Range@100500, fQ]^2 (* Robert G. Wilson v, Nov 06 2016 *)
PROG
(PARI) L=List(); for(n=1, 10000, if(vecmax(digits(n^2))==2, listput(L, n^2))); Vec(L)
\\ See A277959 for more efficient code. - M. F. Hasler, Nov 16 2017
(Magma) [n^2: n in [1..1000000] | Maximum(Intseq(n^2)) eq 2]; // Vincenzo Librandi, Nov 06 2016
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Colin Barker, Nov 05 2016
STATUS
approved