login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307679
Expansion of e.g.f. Product_{k>=1} 1/(1 - x^k/(1 - x)^k)^(1/k).
1
1, 1, 5, 35, 323, 3679, 49819, 781465, 13923545, 277563617, 6118251461, 147715469131, 3875706370315, 109781717161375, 3338229675519803, 108443658227589329, 3747688533281296049, 137273241169036231105, 5311844045472206624005, 216505267421266611639667, 9270689769095765333645651
OFFSET
0,3
FORMULA
E.g.f.: exp(Sum_{k>=1} d(k)*x^k/(k*(1 - x)^k)), where d(k) is the number of divisors of k (A000005).
a(n) = Sum_{k=0..n} binomial(n-1,k-1)*A028342(k)*n!/k!.
EXAMPLE
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 35*x^3/3! + 323*x^4/4! + 3679*x^5/5! + 49819*x^6/6! + 781465*x^7/7! + 13923545*x^8/8! + ...
log(A(x)) = x + 4*x^2/2 + 11*x^3/3 + 27*x^4/4 + 62*x^5/5 + 137*x^6/6 + 296*x^7/7 + 630*x^8/8 + 1326*x^9/9 + ... + A160399(k)*x^k/k + ...
MATHEMATICA
nmax = 20; CoefficientList[Series[Product[1/(1 - x^k/(1 - x)^k)^(1/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 20; CoefficientList[Series[Exp[Sum[DivisorSigma[0, k] x^k/(k (1 - x)^k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 21 2019
STATUS
approved