login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305306
Expansion of e.g.f. 1/(1 + log(1 - x)/(1 - x)).
8
1, 1, 5, 35, 324, 3744, 51902, 839362, 15513096, 322550616, 7451677632, 189366303840, 5249764639248, 157666361452560, 5099445234111888, 176713626295062384, 6531995374500741888, 256537368987293878272, 10667901271715707803264, 468261481657502075856768, 21635865693957558515860224
OFFSET
0,3
COMMENTS
a(n)/n! is the invert transform of [1, 1 + 1/2, 1 + 1/2 + 1/3, 1 + 1/2 + 1/3 + 1/4, ...].
LINKS
N. J. A. Sloane, Transforms
FORMULA
E.g.f.: 1/(1 - Sum_{k>=1} (A001008(k)/A002805(k))*x^k).
a(n) ~ n! / ((1/LambertW(1)^2 - 1) * (1 - LambertW(1))^n). - Vaclav Kotesovec, Aug 08 2021
a(n) = Sum_{k=0..n} |Stirling1(n,k)| * A006153(k). - Seiichi Manyama, May 10 2023
EXAMPLE
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 35*x^3/3! + 324*x^4/4! + 3744*x^5/5! + 51902*x^6/6! + ...
MAPLE
H:= proc(n) H(n):= 1/n +`if`(n=1, 0, H(n-1)) end:
b:= proc(n) option remember; `if`(n=0, 1,
add(H(j)*b(n-j), j=1..n))
end:
a:= n-> b(n)*n!:
seq(a(n), n=0..20); # Alois P. Heinz, May 29 2018
MATHEMATICA
nmax = 20; CoefficientList[Series[1/(1 + Log[1 - x]/(1 - x)), {x, 0, nmax}], x] Range[0, nmax]!
nmax = 20; CoefficientList[Series[1/(1 - Sum[HarmonicNumber[k] x^k , {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[HarmonicNumber[k] a[n - k], {k, 1, n}]; Table[n! a[n], {n, 0, 20}]
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+log(1-x)/(1-x)))) \\ Seiichi Manyama, May 10 2023
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 29 2018
STATUS
approved