login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305308
Decimal expansion of Lagrange(4) = sqrt(1517)/13.
2
2, 9, 9, 6, 0, 5, 2, 6, 2, 9, 8, 6, 9, 2, 9, 9, 4, 6, 9, 2, 3, 4, 1, 3, 9, 4, 0, 2, 6, 2, 6, 3, 1, 8, 6, 3, 9, 7, 5, 8, 3, 0, 2, 1, 9, 1, 5, 0, 0, 5, 6, 4, 4, 4, 8, 1, 4, 0, 5, 2, 6, 3, 4, 0, 6, 5, 6, 0, 1, 0, 3, 4, 0, 4, 3, 5, 8, 8, 8, 9, 9, 8, 0, 2, 7, 1, 3, 2, 6, 1, 7, 9, 0, 9, 3, 9, 8, 2, 1, 8, 5, 3, 0
OFFSET
1,1
COMMENTS
For every irrational number alpha not equivalent to each of the following three numbers i) golden section A001622, ii) sqrt(2) = A002193 and iii) (5 + sqrt(221))/14 = A177841 there exist infinitely many rational numbers h/k (in lowest terms) such that |alpha - h/k| < 1/(Lagrange(4)*k^2). The constant L(4) cannot be replaced by a larger number because then the statement becomes false for, e.g., alpha = (23 + sqrt(1517))/26. Two real numbers x and y are equivalent if there exist integers p, q, r and s with |p*s - q*r| = 1 such that y = (p*x + q)/(r*x + s) (unimodular transformation). This means that the continued fractions of x and y become eventuakky identical.
See the references (in Havil, p. 174, equivalence classes of numbers should have been excluded).
The continued fraction of Lagrange(4) is [2; repeat(1, 252, 3, 1012, 3, 252, 1, 4)]. 1/L(4) = 0.3337725078... < 1/3.
Perron's numbers M(xi) (pp. 4, 5), for M(xi) < 3, are the Lagrange numbers sqrt(9*Q^2 - 4)/Q, with Q = Q(n) = A002559(n), n >= 1, and his corresponding xi(4) = (sqrt(1517) + 23)/26 with a purely periodic simple continued fraction [repeat(2, 2, 1, 1, 1, 1)].
Cassels (p. 18) uses the version: For irrational theta not equivalent to the above given three numbers i), ii) and iii) there are infinitely many solutions of q*||q*theta|| < 1/Lagrange(4), where 1/Lagrange(4) cannot be improved for theta equivalent to -29/26 + (1/26)*sqrt(1517). Here ||x|| is the positive difference between x and the nearest integer.
REFERENCES
J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge University Press, 1957, Chapter II, The Markoff Chain, pp. 18-44.
Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 174-175 and 221-224.
J. F. Koksma, Diophantische Approximationen, 1936, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vierter Band, Teil 4, Julius Springer, Berlin, pp. 29-33.
Ivan Niven, Diophantine Approximations, Interscience Publishers, 1963, p. 14.
Oskar Perron, Über die Approximation irrationaler Zahlen durch rationale, 4. Abhandlung, pp. 1- 17, and part II., 8. Abhandlung, pp. 1-12. Sitzungsber. Heidelberger Akademie der Wiss., 1921, Carls Winters Universitätsbuchhandlung.
Paulo Ribenboim, Meine Zahlen, meine Freunde, 2009, Springer, 10. 6 B, pp. 312-314.
Jörn Steuding, Diophantine Analysis, 2005, Chapman & Hall/CRC, pp. 80-82.
LINKS
Encyclopedia of Mathematics, Diophantine approximations.
A. A. Markoff, Sur les formes quadratiques binaires indéfinies, Math. Ann, 15 (18) (1879) 381-406.
A. A. Markoff, Sur les formes quadratiques binaires indéfinies (Second mémoire), Math. Ann, 17 (1880) 379-399.
FORMULA
Lagrange(4) = sqrt(9*M(4)^2 - 4)/M(4) = sqrt(9*13^2 - 4)/13 = sqrt(1517)/13, with the Markoff number M(4) = A002559(4) = 13.
EXAMPLE
2.9960526298692994692341394026263186397583021915005644481405263406560103404...
MATHEMATICA
RealDigits[Sqrt[1517]/13, 10, 120][[1]] (* Harvey P. Dale, Apr 12 2022 *)
CROSSREFS
The Lagrange numbers for n = 1..3 are A002163, A010466, A200991.
Sequence in context: A021889 A309927 A016643 * A087042 A266274 A003678
KEYWORD
nonn,cons
AUTHOR
Wolfdieter Lang, Jun 25 2018
STATUS
approved