OFFSET
1,1
COMMENTS
Sqrt(8) = 2*sqrt(2) is the length of the longest (rigid) ladder that can be carried horizontally around a right angled corner in a hallway of unit width. - Lekraj Beedassy, Apr 19 2006
Continued fraction expansion is 2 followed by {1, 4} repeated. - Harry J. Smith, Jun 05 2009
This is the second Lagrange number. - Alonso del Arte, Dec 06 2011
Also 2*sqrt(2) is the ratio of the perimeter of a square to its diameter (diagonal length). - Rick L. Shepherd, Dec 29 2016
Uchiyama shows that every interval (n, n + c*n^(1/4)) contains an integer that is the sum of two squares, where c = 2^(3/2). - Michel Marcus, Jan 03 2018
This is the area of the eighth-smallest triangle with integer side lengths (2, 3, 3), or the seventh-smallest triangle if two smaller triangles with the same area are counted only once (see A331251). - Hugo Pfoertner, Feb 12 2020
Diameter of a sphere whose surface area equals 8*Pi. More generally, the square root of x is also the diameter of a sphere whose surface area equals x*Pi. - Omar E. Pol, Feb 13 2020
Sqrt(8) = area between the curves y = sin(x) and y = cos(x) for Pi/4 < x < 5 Pi/4; this is one of infinitely many congruent convex regions bounded by the two curves. - Clark Kimberling, May 03 2020
Area of the regular 8-gon with circumradius =1. - R. J. Mathar, Aug 24 2023
REFERENCES
S. R. Finch, Moving Sofa Constant, Sect. 8.12 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 519-523, 2003.
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..20000
Jason Kimberley, Index of expansions of sqrt(d) in base b
R. J. Nemiroff & J. Bonnell, The first 1 million digits of the square root of 8
R. J. Nemiroff & J. Bonnell, Plouffe's Inverter, The first 1 million digits of the square root of 8
Ana Rechtman, Juin 2023, 3e défi, Images des Mathématiques, CNRS, 2023.
S. Uchiyama, On the distribution of integers representable as a sum of two h-th powers, J. Fac. Sci. Hokkaido Univ. Ser. I, 18, 124-127, 1964/1965.
Eric Weisstein's World of Mathematics, Moving Ladder Problem
FORMULA
Equals 1 + Sum_{n>=1} ( Product_{k=1..n} (2k+1)/(4k) ). - Bruno Berselli, Mar 16 2014
Equals 2*A002193. - R. J. Mathar, Jan 14 2021
From Peter Bala, Mar 01 2022: (Start)
Equals 4*hypergeom([-1/2, -3/4], [5/4], -1). (End)
Equals 8 * A020765. - R. J. Mathar, Aug 24 2023
EXAMPLE
2.828427124746190097603377448419396157139343750753896146353359475981464...
Sqrt(8) = sqrt(1+2*i*sqrt(2)) + sqrt(1-2*i*sqrt(2)) = sqrt(1/2+2*i*sqrt(3)) + sqrt(1/2-2*i*sqrt(3)), where i=sqrt(-1). - Bruno Berselli, Nov 20 2012
1 + 3/4 + 3*5/(4*8) + 3*5*7/(4*8*12) + 3*5*7*9/(4*8*12*16) + ... - Bruno Berselli, Mar 16 2014
MAPLE
evalf(2^(3/2)) ; # R. J. Mathar, Jul 15 2013
MATHEMATICA
RealDigits[N[Sqrt[8], 200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Mar 04 2011 *)
PROG
(PARI) default(realprecision, 20080); x=sqrt(8); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010466.txt", n, " ", d)); \\ Harry J. Smith, Jun 02 2009
(Magma) SetDefaultRealField(RealField(100)); Sqrt(8); // Vincenzo Librandi, Feb 13 2020
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved