login
A010466
Decimal expansion of square root of 8.
53
2, 8, 2, 8, 4, 2, 7, 1, 2, 4, 7, 4, 6, 1, 9, 0, 0, 9, 7, 6, 0, 3, 3, 7, 7, 4, 4, 8, 4, 1, 9, 3, 9, 6, 1, 5, 7, 1, 3, 9, 3, 4, 3, 7, 5, 0, 7, 5, 3, 8, 9, 6, 1, 4, 6, 3, 5, 3, 3, 5, 9, 4, 7, 5, 9, 8, 1, 4, 6, 4, 9, 5, 6, 9, 2, 4, 2, 1, 4, 0, 7, 7, 7, 0, 0, 7, 7, 5, 0, 6, 8, 6, 5, 5, 2, 8, 3, 1, 4, 5, 4, 7
OFFSET
1,1
COMMENTS
Sqrt(8) = 2*sqrt(2) is the length of the longest (rigid) ladder that can be carried horizontally around a right angled corner in a hallway of unit width. - Lekraj Beedassy, Apr 19 2006
Continued fraction expansion is 2 followed by {1, 4} repeated. - Harry J. Smith, Jun 05 2009
This is the second Lagrange number. - Alonso del Arte, Dec 06 2011
Also 2*sqrt(2) is the ratio of the perimeter of a square to its diameter (diagonal length). - Rick L. Shepherd, Dec 29 2016
Uchiyama shows that every interval (n, n + c*n^(1/4)) contains an integer that is the sum of two squares, where c = 2^(3/2). - Michel Marcus, Jan 03 2018
This is the area of the eighth-smallest triangle with integer side lengths (2, 3, 3), or the seventh-smallest triangle if two smaller triangles with the same area are counted only once (see A331251). - Hugo Pfoertner, Feb 12 2020
Diameter of a sphere whose surface area equals 8*Pi. More generally, the square root of x is also the diameter of a sphere whose surface area equals x*Pi. - Omar E. Pol, Feb 13 2020
Sqrt(8) = area between the curves y = sin(x) and y = cos(x) for Pi/4 < x < 5 Pi/4; this is one of infinitely many congruent convex regions bounded by the two curves. - Clark Kimberling, May 03 2020
Area of the regular 8-gon with circumradius =1. - R. J. Mathar, Aug 24 2023
REFERENCES
S. R. Finch, Moving Sofa Constant, Sect. 8.12 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 519-523, 2003.
LINKS
R. J. Nemiroff & J. Bonnell, Plouffe's Inverter, The first 1 million digits of the square root of 8
Ana Rechtman, Juin 2023, 3e défi, Images des Mathématiques, CNRS, 2023.
S. Uchiyama, On the distribution of integers representable as a sum of two h-th powers, J. Fac. Sci. Hokkaido Univ. Ser. I, 18, 124-127, 1964/1965.
Eric Weisstein's World of Mathematics, Moving Ladder Problem
FORMULA
Equals 1 + Sum_{n>=1} ( Product_{k=1..n} (2k+1)/(4k) ). - Bruno Berselli, Mar 16 2014
Equals 2*A002193. - R. J. Mathar, Jan 14 2021
From Peter Bala, Mar 01 2022: (Start)
Equals 3*Sum_{n >= 0} (1/(4*n+1) - 1/(4*n-3))*binomial(1/2,n). Cf. A002580 and A175576.
Equals 4*hypergeom([-1/2, -3/4], [5/4], -1). (End)
Equals 8 * A020765. - R. J. Mathar, Aug 24 2023
EXAMPLE
2.828427124746190097603377448419396157139343750753896146353359475981464...
Sqrt(8) = sqrt(1+2*i*sqrt(2)) + sqrt(1-2*i*sqrt(2)) = sqrt(1/2+2*i*sqrt(3)) + sqrt(1/2-2*i*sqrt(3)), where i=sqrt(-1). - Bruno Berselli, Nov 20 2012
1 + 3/4 + 3*5/(4*8) + 3*5*7/(4*8*12) + 3*5*7*9/(4*8*12*16) + ... - Bruno Berselli, Mar 16 2014
MAPLE
evalf(2^(3/2)) ; # R. J. Mathar, Jul 15 2013
MATHEMATICA
RealDigits[N[Sqrt[8], 200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Mar 04 2011 *)
PROG
(PARI) default(realprecision, 20080); x=sqrt(8); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010466.txt", n, " ", d)); \\ Harry J. Smith, Jun 02 2009
(Magma) SetDefaultRealField(RealField(100)); Sqrt(8); // Vincenzo Librandi, Feb 13 2020
CROSSREFS
Cf. A040005 (continued fraction).
Sequence in context: A064912 A010698 A286309 * A086396 A195844 A222828
KEYWORD
nonn,cons
STATUS
approved