login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: A(x) = 1 + x*A(x)^3/(1 - x).
18

%I #26 Dec 09 2024 04:48:15

%S 1,1,4,19,101,578,3479,21714,139269,912354,6078832,41066002,280636657,

%T 1936569717,13475408847,94446518559,666149216744,4724705621702,

%U 33676421377532,241100485812034,1732999323835918,12501487280292424,90478497094713958,656788523782034248,4780725762185300389

%N G.f. A(x) satisfies: A(x) = 1 + x*A(x)^3/(1 - x).

%C Convolution square root of A270386.

%H Michael De Vlieger, <a href="/A307678/b307678.txt">Table of n, a(n) for n = 0..1000</a>

%H Guillermo Esteban, Clemens Huemer, and Rodrigo I. Silveira, <a href="https://arxiv.org/abs/2003.00524">New production matrices for geometric graphs</a>, arXiv:2003.00524 [math.CO], 2020.

%F a(0) = 1; a(n) = Sum_{j=0..n-1} Sum_{i=0..j} Sum_{k=0..i} a(k)*a(i-k)*a(j-i).

%F a(n) ~ 31^(n + 1/2) / (3*sqrt(Pi) * n^(3/2) * 2^(2*n+2)). - _Vaclav Kotesovec_, May 06 2019

%F G.f.: (2/sqrt(3*x/(1-x)))*sin((1/3)*asin(sqrt((27*x/(1-x))/4))). - _Vladimir Kruchinin_, Feb 05 2022

%F a(n) = Sum_{k=0..n} C(n-1,n-k)*C(3*k,k)/(2*k+1). - _Vladimir Kruchinin_, Feb 05 2022

%e G.f.: A(x) = 1 + x + 4*x^2 + 19*x^3 + 101*x^4 + 578*x^5 + 3479*x^6 + 21714*x^7 + 139269*x^8 + 912354*x^9 + 6078832*x^10 + ...

%t terms = 24; A[_] = 1; Do[A[x_] = 1 + x A[x]^3/(1 - x) + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]

%t a[0] = 1; a[n_] := a[n] = Sum[Sum[Sum[a[k] a[i - k] a[j - i], {k, 0, i}], {i, 0, j}], {j, 0, n - 1}]; Table[a[n], {n, 0, 24}]

%t terms = 24; CoefficientList[Series[2 Sqrt[(1 - x) Sin[1/3 ArcSin[3/2 Sqrt[3] Sqrt[x/(1 - x)]]]^2/x]/Sqrt[3], {x, 0, terms}], x]

%o (Maxima)

%o a(n):=sum(binomial(n-1,n-k)*(binomial(3*k,k))/(2*k+1),k,0,n); /* _Vladimir Kruchinin_, Feb 05 2022*/

%o (PARI) {a(n) = my(A=[1]); for(m=1, n, A=concat(A, 0);

%o A[#A] = 1 + sum(k=1, m-1, (polcoeff(Ser(A)^3, k)) )); A[n+1]}

%o for(n=0, 30, print1(a(n), ", ")) \\ _Vaclav Kotesovec_, Nov 23 2024, after _Paul D. Hanna_

%Y Cf. A001764, A002212, A006013, A127897, A188687 (partial sums), A270386.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Apr 21 2019