login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302719
Number of edge covers in the n-path complement graph.
2
0, 0, 0, 2, 26, 580, 23116, 1703182, 237842582, 64143512608, 33852316389688, 35268292090882874, 72930742736413804146, 300323342846133370497564, 2467442527810798875863471748, 40490661363717159406441954638982, 1327931037076594186049396631983031214
OFFSET
1,4
LINKS
Eric Weisstein's World of Mathematics, Edge Cover
Eric Weisstein's World of Mathematics, Path Complement Graph
FORMULA
a(n) = Sum_{i=0..n} (Sum_{k=0, n-i} binomial(n-i, k)*A006129(k)*(2^i)^k*(2^i-1)^(n-i-k)) * (Sum_{j=floor(i/2}, i} (-1)^j*binomial(n-j, i-j)*binomial(j-1, 2*j-i)*2^binomial(i, 2)/2^j). - Andrew Howroyd, Apr 23 2018
MATHEMATICA
Table[Sum[Sum[Binomial[n - i, k] Sum[(-1)^(k - j) Binomial[k, j] 2^Binomial[j, 2], {j, 0, k}] (2^i)^k If[i == 0 && k == n, 1, (2^i - 1)^(n - i - k)], {k, 0, n - i}] Sum[(-1)^j Binomial[n - j, i - j] Binomial[j - 1, 2 j - i] 2^(Binomial[i, 2] - j), {j, Ceiling[i/2], i}], {i, 0, n}], {n, 10}] (* Eric W. Weisstein, Apr 24 2018 *)
PROG
(PARI)
a(n)={ my(p=serlaplace(sum(k=0, n, 2^binomial(k, 2)*x^k/k!)/exp(x+O(x*x^n))));
sum(i=0, n, sum(k=0, n-i, binomial(n-i, k)*polcoeff(p, k)*(2^i)^k*(2^i-1)^(n-i-k)) * sum(j=i\2, i, (-1)^j * binomial(n-j, i-j) * binomial(j-1, 2*j-i) * 2^binomial(i, 2)/2^j))} \\ Andrew Howroyd, Apr 23 2018
CROSSREFS
Sequence in context: A216254 A177316 A255538 * A377527 A377547 A377632
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Apr 12 2018
EXTENSIONS
Terms a(10) and beyond from Andrew Howroyd, Apr 23 2018
STATUS
approved