This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A302719 Number of edge covers in the n-path complement graph. 1

%I

%S 0,0,0,2,26,580,23116,1703182,237842582,64143512608,33852316389688,

%T 35268292090882874,72930742736413804146,300323342846133370497564,

%U 2467442527810798875863471748,40490661363717159406441954638982,1327931037076594186049396631983031214

%N Number of edge covers in the n-path complement graph.

%H Andrew Howroyd, <a href="/A302719/b302719.txt">Table of n, a(n) for n = 1..50</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EdgeCover.html">Edge Cover</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PathComplementGraph.html">Path Complement Graph</a>

%F a(n) = Sum_{i=0..n} (Sum_{k=0, n-i} binomial(n-i, k)*A006129(k)*(2^i)^k*(2^i-1)^(n-i-k)) * (Sum_{j=floor(i/2}, i} (-1)^j*binomial(n-j, i-j)*binomial(j-1, 2*j-i)*2^binomial(i, 2)/2^j). - _Andrew Howroyd_, Apr 23 2018

%t Table[Sum[Sum[Binomial[n - i, k] Sum[(-1)^(k - j) Binomial[k, j] 2^Binomial[j, 2], {j, 0, k}] (2^i)^k If[i == 0 && k == n, 1, (2^i - 1)^(n - i - k)], {k, 0, n - i}] Sum[(-1)^j Binomial[n - j, i - j] Binomial[j - 1, 2 j - i] 2^(Binomial[i, 2] - j), {j, Ceiling[i/2], i}], {i, 0, n}], {n, 10}] (* _Eric W. Weisstein_, Apr 24 2018 *)

%o (PARI)

%o a(n)={ my(p=serlaplace(sum(k=0, n, 2^binomial(k,2)*x^k/k!)/exp(x+O(x*x^n))));

%o sum(i=0, n, sum(k=0, n-i, binomial(n-i,k)*polcoeff(p,k)*(2^i)^k*(2^i-1)^(n-i-k)) * sum(j=i\2, i, (-1)^j * binomial(n-j, i-j) * binomial(j-1, 2*j-i) * 2^binomial(i,2)/2^j))} \\ _Andrew Howroyd_, Apr 23 2018

%Y Cf. A006129, A170941.

%K nonn

%O 1,4

%A _Eric W. Weisstein_, Apr 12 2018

%E Terms a(10) and beyond from _Andrew Howroyd_, Apr 23 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 21:21 EST 2019. Contains 329937 sequences. (Running on oeis4.)