login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: A(x)^3 = 36*x + 1/A(x)^3.
0

%I #12 Jan 25 2023 09:59:12

%S 1,6,18,-288,-1890,41472,324324,-7962624,-67343562,1751777280,

%T 15489019260,-417368899584,-3797625904020,104791699095552,

%U 972776481568200,-27305722735755264,-257250740550710490,7314721255213498368,69699818292739559820

%N G.f. A(x) satisfies: A(x)^3 = 36*x + 1/A(x)^3.

%F G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:

%F (1) A(x)^3 = 18*x + sqrt(1 + 324*x^2).

%F (2) A(x)^3 = 36*x + 1/A(x)^3.

%F (3) A(x)^3 = x / Series_Reversion( x/sqrt(1 - 36*x) ).

%F (4) A(x) = 1/(1 - 36*x/A(x)^3)^(1/6).

%F (5) A( x/sqrt(1 - 36*x) ) = 1/(1 - 36*x)^(1/6).

%F (6) A(x)*A(-x) = 1.

%F (7) A'(x) = 6*A(x) / sqrt(1 + 324*x^2).

%F (8) A(x) = exp( Integral 6/sqrt(1 + 324*x^2) dx ).

%F a(n) ~ cos(Pi*(n/2 - 2/3)) * 2^(n + 1/2) * 3^(2*n - 1) / (sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, May 15 2022

%F D-finite with recurrence n*(n-1)*a(n) +36*(3*n-5)*(3*n-7)*a(n-2)=0. - _R. J. Mathar_, Jan 25 2023

%e G.f.: A(x) = 1 + 6*x + 18*x^2 - 288*x^3 - 1890*x^4 + 41472*x^5 + 324324*x^6 - 7962624*x^7 - 67343562*x^8 + ...

%e where A(x)^3 = 36*x + 1/A(x)^3, as seen by comparing the following series:

%e A(x)^3 = 1 + 18*x + 162*x^2 - 13122*x^4 + 2125764*x^6 - 430467210*x^8 + 97629963228*x^10 + ...

%e 1/A(x)^3 = 1 - 18*x + 162*x^2 - 13122*x^4 + 2125764*x^6 - 430467210*x^8 + ...

%o (PARI) my(x='x+O('x^22)); Vec((18*x + sqrt(1 + 324*x^2))^(1/3))

%o (PARI) {a(n) = my(A = (18*x + sqrt(1 + 324*x^2 +x*O(x^n)) )^(1/3)); polcoeff(A,n)}

%o for(n=0,21, print1(a(n),", "))

%o (PARI) {a(n) = my(A = (x / serreverse( x/sqrt(1 - 36*x +x*O(x^n)) ))^(1/3)); polcoeff(A,n)}

%o for(n=0,21, print1(a(n),", "))

%o (PARI) {a(n) = my(A = exp( intformal( 6/sqrt(1 + 324*x^2 +x*O(x^n)) ))); polcoeff(A,n)}

%o for(n=0,21, print1(a(n),", "))

%K sign

%O 0,2

%A _Paul D. Hanna_, May 14 2022