The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A354015 Expansion of e.g.f. 1/(1 - x)^(1 - log(1-x)). 1
1, 1, 4, 18, 106, 750, 6188, 58184, 613156, 7149780, 91319712, 1267089912, 18969355656, 304646227704, 5222700792528, 95169251327040, 1836450816902928, 37403582826055824, 801728489886598848, 18037821249349491360, 424970923585819603872, 10462258547232790348512 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
E.g.f.: exp( -log(1-x) * (1 - log(1-x)) ).
a(0) = 1; a(n) = Sum_{k=1..n} A000776(k-1) * binomial(n-1,k-1) * a(n-k) = (n-1)! * Sum_{k=1..n} (1 + 2*Sum_{j=1..k-1} 1/j) * a(n-k)/(n-k)!.
a(n) = Sum_{k=0..n} A047974(k) * |Stirling1(n,k)|.
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x)^(1-log(1-x))))
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-log(1-x)*(1-log(1-x)))))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, i, (1+2*sum(k=1, j-1, 1/k))*v[i-j+1]/(i-j)!)); v;
(PARI) a(n) = sum(k=0, n, k!*sum(j=0, k\2, 1/(j!*(k-2*j)!))*abs(stirling(n, k, 1)));
CROSSREFS
Sequence in context: A007711 A321278 A020114 * A009597 A241841 A241842
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 14 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 17:32 EDT 2024. Contains 373391 sequences. (Running on oeis4.)