login
A379037
G.f. A(x) satisfies A(x) = ( (1 + x) * (1 + x*A(x)^(3/2)) )^2.
1
1, 4, 18, 106, 689, 4782, 34707, 260190, 1999168, 15660176, 124596498, 1004110948, 8179379807, 67239070868, 557098881919, 4647368670950, 39001655222787, 329048378867468, 2789241880512898, 23743798316713368, 202894843070927859, 1739775692700850554
OFFSET
0,2
FORMULA
G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A364336.
a(n) = 2 * Sum_{k=0..n} binomial(3*k+2,k) * binomial(3*k+2,n-k)/(3*k+2).
PROG
(PARI) a(n) = 2*sum(k=0, n, binomial(3*k+2, k)*binomial(3*k+2, n-k)/(3*k+2));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 14 2024
STATUS
approved