The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007831 Number of edge-labeled series-reduced trees with n nodes. 2
 1, 0, 1, 1, 16, 61, 806, 6329, 89272, 1082281, 17596162, 284074165, 5407229972, 107539072733, 2380274168806, 55833426732529, 1418006883852784, 38195636967960913, 1097755724834189834, 33345176998235584301, 1071124330593423824908, 36203857373308709200645 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 LINKS G. C. Greubel, Table of n, a(n) for n = 1..400 P. J. Cameron, Counting two-graphs related to trees, Elec. J. Combin., Vol. 2, #R4. FORMULA a(n) = A005512(n+1) / (n+1) for n >= 2. - Sean A. Irvine, Feb 03 2018 E.g.f.: 1/(2*x) + (x-1)/2 - ((1+x)/(2*x))*(1 + LambertW(-x/(1+x)))^2. - G. C. Greubel, Mar 08 2020 MAPLE seq( `if`(n=1, 1, (n-1)!*add((-1)^k*binomial(n+1, k)*(n-k+1)^(n-k-1)/( (n+1)*(n-k-1)!), k = 0..n-1)), n=1..20); # G. C. Greubel, Mar 08 2020 MATHEMATICA Table[If[n==1, 1, (n-1)!*Sum[(-1)^k*Binomial[n+1, k]*(n-k+1)^(n-k-1)/((n+1)*(n - k-1)!), {k, 0, n-1}]], {n, 20}] (* G. C. Greubel, Mar 08 2020 *) PROG (PARI) a(n) = if(n==1, 1, (n-1)!*sum(k=0, n-1, (-1)^k*binomial(n+1, k)*(n-k+1 )^(n-k-1)/( (n+1)*(n-k-1)!))); \\ G. C. Greubel, Mar 08 2020 (MAGMA) [1] cat [Factorial(n-1)*(&+[(-1)^k*Binomial(n+1, k)*(n-k+1)^(n-k-1)/((n+1)*Factorial(n-k-1)): k in [0..n-1]]): n in [2..20]] // G. C. Greubel, Mar 08 2020 (Sage) [1]+[factorial(n-1)*sum((-1)^k*binomial(n+1, k)*(n-k+1)^(n-k-1)/( (n+1)*factorial(n-k-1)) for k in (0..n-1)) for n in (2..20)] # G. C. Greubel, Mar 08 2020 CROSSREFS Cf. A005512. Sequence in context: A317431 A241523 A264632 * A214524 A118254 A356249 Adjacent sequences:  A007828 A007829 A007830 * A007832 A007833 A007834 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 16 05:55 EDT 2022. Contains 356160 sequences. (Running on oeis4.)