login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356249
a(n) = Sum_{k=1..n} (k * floor(n/k))^3.
2
1, 16, 62, 219, 405, 1053, 1523, 2948, 4407, 7041, 8703, 15283, 17949, 24657, 32685, 44806, 50536, 70687, 78573, 105411, 125879, 149879, 163565, 222425, 247476, 286134, 327634, 396258, 423084, 532236, 564818, 664763, 738095, 821693, 904937, 1107618, 1162268, 1277588, 1395760
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{k=1..n} k^3 * Sum_{d|k} (1 - (1 - 1/d)^3).
G.f.: (1/(1 - x)) * Sum_{k>=1} (k^3 - (k - 1)^3) * x^k * (1 + 4*x^k + x^(2*k))/(1 - x^k)^4.
From Vaclav Kotesovec, Aug 02 2022: (Start)
a(n) = A064603(n) - 3*A356125(n) + 3*A319086(n).
a(n) ~ n^4 * (Pi^2/8 + Pi^4/360 - 3*zeta(3)/4). (End)
MATHEMATICA
a[n_] := Sum[(k * Floor[n/k])^3, {k, 1, n}]; Array[a, 40] (* Amiram Eldar, Jul 31 2022 *)
PROG
(PARI) a(n) = sum(k=1, n, (k*(n\k))^3);
(PARI) a(n) = sum(k=1, n, k^3*sumdiv(k, d, 1-(1-1/d)^3));
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (k^3-(k-1)^3)*x^k*(1+4*x^k+x^(2*k))/(1-x^k)^4)/(1-x))
(Python)
from math import isqrt
def A356249(n): return -(s:=isqrt(n))**5*(s+1)**2 + sum((q:=n//k)**2*(k*(3*(k-1))+q*(k*(k*(4*k+6)-6)+q*(k*(3*(k-1))+1)+2)+1) for k in range(1, s+1))>>2 # Chai Wah Wu, Oct 21 2023
CROSSREFS
Column k=3 of A356250.
Sequence in context: A007831 A214524 A118254 * A066391 A022289 A143860
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 31 2022
STATUS
approved