login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356250
Square array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} (j * floor(n/j))^k.
1
1, 1, 2, 1, 4, 3, 1, 8, 8, 4, 1, 16, 22, 15, 5, 1, 32, 62, 57, 21, 6, 1, 64, 178, 219, 91, 33, 7, 1, 128, 518, 849, 405, 185, 41, 8, 1, 256, 1522, 3315, 1843, 1053, 247, 56, 9, 1, 512, 4502, 13017, 8541, 6065, 1523, 402, 69, 10, 1, 1024, 13378, 51339, 40171, 35253, 9571, 2948, 545, 87, 11
OFFSET
1,3
FORMULA
T(n,k) = Sum_{j=1..n} j^k * Sum_{d|j} (1 - (1 - 1/d)^k) for k > 0.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
2, 4, 8, 16, 32, 64, 128, ...
3, 8, 22, 62, 178, 518, 1522, ...
4, 15, 57, 219, 849, 3315, 13017, ...
5, 21, 91, 405, 1843, 8541, 40171, ...
6, 33, 185, 1053, 6065, 35253, 206345, ...
7, 41, 247, 1523, 9571, 61091, 394987, ...
MATHEMATICA
T[n_, k_] := Sum[(j * Floor[n/j])^k, {j, 1, n}]; Table[T[k, n - k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Jul 31 2022 *)
PROG
(PARI) T(n, k) = sum(j=1, n, (j*(n\j))^k);
(PARI) T(n, k) = if(k==0, n, sum(j=1, n, j^k*sumdiv(j, d, 1-(1-1/d)^k)));
CROSSREFS
Columns k=0..3 give A001477, A024916, A350123, A356249.
T(n,n) gives A356238.
Cf. A344725.
Sequence in context: A105851 A106195 A247023 * A348702 A051129 A319075
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Jul 31 2022
STATUS
approved