Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Jul 31 2022 13:17:35
%S 1,1,2,1,4,3,1,8,8,4,1,16,22,15,5,1,32,62,57,21,6,1,64,178,219,91,33,
%T 7,1,128,518,849,405,185,41,8,1,256,1522,3315,1843,1053,247,56,9,1,
%U 512,4502,13017,8541,6065,1523,402,69,10,1,1024,13378,51339,40171,35253,9571,2948,545,87,11
%N Square array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} (j * floor(n/j))^k.
%F T(n,k) = Sum_{j=1..n} j^k * Sum_{d|j} (1 - (1 - 1/d)^k) for k > 0.
%e Square array begins:
%e 1, 1, 1, 1, 1, 1, 1, ...
%e 2, 4, 8, 16, 32, 64, 128, ...
%e 3, 8, 22, 62, 178, 518, 1522, ...
%e 4, 15, 57, 219, 849, 3315, 13017, ...
%e 5, 21, 91, 405, 1843, 8541, 40171, ...
%e 6, 33, 185, 1053, 6065, 35253, 206345, ...
%e 7, 41, 247, 1523, 9571, 61091, 394987, ...
%t T[n_, k_] := Sum[(j * Floor[n/j])^k, {j, 1, n}]; Table[T[k, n - k], {n, 1, 11}, {k, 1, n}] // Flatten (* _Amiram Eldar_, Jul 31 2022 *)
%o (PARI) T(n, k) = sum(j=1, n, (j*(n\j))^k);
%o (PARI) T(n, k) = if(k==0, n, sum(j=1, n, j^k*sumdiv(j, d, 1-(1-1/d)^k)));
%Y Columns k=0..3 give A001477, A024916, A350123, A356249.
%Y T(n,n) gives A356238.
%Y Cf. A344725.
%K nonn,tabl
%O 1,3
%A _Seiichi Manyama_, Jul 31 2022