login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344725
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} floor(n/j)^k.
5
1, 1, 3, 1, 5, 5, 1, 9, 11, 8, 1, 17, 29, 22, 10, 1, 33, 83, 74, 32, 14, 1, 65, 245, 274, 136, 52, 16, 1, 129, 731, 1058, 644, 254, 66, 20, 1, 257, 2189, 4162, 3160, 1396, 382, 92, 23, 1, 513, 6563, 16514, 15692, 8054, 2502, 596, 115, 27, 1, 1025, 19685, 65794, 78256, 47452, 17086, 4388, 833, 147, 29
OFFSET
1,3
LINKS
FORMULA
G.f. of column k: (1/(1 - x)) * Sum_{j>=1} (j^k - (j - 1)^k) * x^j/(1 - x^j).
T(n,k) = Sum_{j=1..n} Sum_{d|j} d^k - (d - 1)^k.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
3, 5, 9, 17, 33, 65, ...
5, 11, 29, 83, 245, 731, ...
8, 22, 74, 274, 1058, 4162, ...
10, 32, 136, 644, 3160, 15692, ...
14, 52, 254, 1396, 8054, 47452, ...
MATHEMATICA
T[n_, k_] := Sum[Quotient[n, j]^k, {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, May 27 2021 *)
PROG
(PARI) T(n, k) = sum(j=1, n, (n\j)^k);
(PARI) T(n, k) = sum(j=1, n, sumdiv(j, d, d^k-(d-1)^k));
(Python)
from math import isqrt
from itertools import count, islice
def A344725_T(n, k): return -(s:=isqrt(n))**(k+1)+sum((q:=n//w)*(w**k-(w-1)**k+q**(k-1)) for w in range(1, s+1))
def A344725_gen(): # generator of terms
return (A344725_T(k+1, n-k) for n in count(1) for k in range(n))
A344725_list = list(islice(A344725_gen(), 30)) # Chai Wah Wu, Oct 26 2023
CROSSREFS
Columns k=1..5 give A006218, A222548, A318742, A318743, A318744.
T(n,n) gives A332469.
Sequence in context: A182397 A376102 A343510 * A209560 A211977 A072919
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, May 27 2021
STATUS
approved