login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344723
a(n) = Sum_{k=1..n} (-1)^(k+1) * floor(n/k)^5.
2
1, 31, 243, 992, 3094, 7564, 16596, 31744, 58237, 97117, 158169, 241837, 364299, 521829, 745693, 1018120, 1389402, 1837302, 2423834, 3105432, 3998776, 5007286, 6289998, 7738784, 9543887, 11537207, 14031231, 16717879, 20018661, 23629281, 27958433, 32577739, 38219963, 44148743
OFFSET
1,2
COMMENTS
In general, for m > 1, Sum_{k=1..n} (-1)^(k+1) * floor(n/k)^m ~ (1 - 2^(1-m)) * zeta(m) * n^m. - Vaclav Kotesovec, May 28 2021
LINKS
FORMULA
a(n) = Sum_{k=1,..n} Sum_{d|k} (-1)^(k/d + 1) * (d^5 - (d - 1)^5).
G.f.: (1/(1 - x)) * Sum_{k>=1} (k^5 - (k - 1)^5) * x^k/(1 + x^k).
a(n) ~ 15*zeta(5)*n^5/16. - Vaclav Kotesovec, May 28 2021
MATHEMATICA
a[n_] := Sum[(-1)^(k + 1) * Quotient[n, k]^5, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, May 27 2021 *)
Accumulate[Table[-3*DivisorSigma[0, n] + 2*DivisorSigma[0, 2*n] + 10*DivisorSigma[1, n] - 5*DivisorSigma[1, 2*n] - 15*DivisorSigma[2, n] + 5*DivisorSigma[2, 2*n] + 25/2 * DivisorSigma[3, n] - 5/2 * DivisorSigma[3, 2*n] - 45/8 *DivisorSigma[4, n] + 5/8 * DivisorSigma[4, 2*n], {n, 1, 50}]] (* Vaclav Kotesovec, May 28 2021 *)
PROG
(PARI) a(n) = sum(k=1, n, (-1)^(k+1)*(n\k)^5);
(PARI) a(n) = sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1)*(d^5-(d-1)^5)));
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (k^5-(k-1)^5)*x^k/(1+x^k))/(1-x))
CROSSREFS
Column k=5 of A344726.
Cf. A318744.
Sequence in context: A258807 A358934 A221848 * A284926 A321544 A147963
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 27 2021
STATUS
approved