Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 May 28 2021 15:57:58
%S 1,31,243,992,3094,7564,16596,31744,58237,97117,158169,241837,364299,
%T 521829,745693,1018120,1389402,1837302,2423834,3105432,3998776,
%U 5007286,6289998,7738784,9543887,11537207,14031231,16717879,20018661,23629281,27958433,32577739,38219963,44148743
%N a(n) = Sum_{k=1..n} (-1)^(k+1) * floor(n/k)^5.
%C In general, for m > 1, Sum_{k=1..n} (-1)^(k+1) * floor(n/k)^m ~ (1 - 2^(1-m)) * zeta(m) * n^m. - _Vaclav Kotesovec_, May 28 2021
%H Seiichi Manyama, <a href="/A344723/b344723.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = Sum_{k=1,..n} Sum_{d|k} (-1)^(k/d + 1) * (d^5 - (d - 1)^5).
%F G.f.: (1/(1 - x)) * Sum_{k>=1} (k^5 - (k - 1)^5) * x^k/(1 + x^k).
%F a(n) ~ 15*zeta(5)*n^5/16. - _Vaclav Kotesovec_, May 28 2021
%t a[n_] := Sum[(-1)^(k + 1) * Quotient[n, k]^5, {k, 1, n}]; Array[a, 50] (* _Amiram Eldar_, May 27 2021 *)
%t Accumulate[Table[-3*DivisorSigma[0, n] + 2*DivisorSigma[0, 2*n] + 10*DivisorSigma[1, n] - 5*DivisorSigma[1, 2*n] - 15*DivisorSigma[2, n] + 5*DivisorSigma[2, 2*n] + 25/2 * DivisorSigma[3, n] - 5/2 * DivisorSigma[3, 2*n] - 45/8 *DivisorSigma[4, n] + 5/8 * DivisorSigma[4, 2*n], {n, 1, 50}]] (* _Vaclav Kotesovec_, May 28 2021 *)
%o (PARI) a(n) = sum(k=1, n, (-1)^(k+1)*(n\k)^5);
%o (PARI) a(n) = sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1)*(d^5-(d-1)^5)));
%o (PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (k^5-(k-1)^5)*x^k/(1+x^k))/(1-x))
%Y Column k=5 of A344726.
%Y Cf. A318744.
%K nonn
%O 1,2
%A _Seiichi Manyama_, May 27 2021