OFFSET
1,5
LINKS
Seiichi Manyama, Antidiagonals n = 1..140, flattened
FORMULA
G.f. of column k: (1/(1 - x)) * Sum_{j>=1} (j^k - (j - 1)^k) * x^j/(1 + x^j).
T(n,k) = Sum_{j=1..n} Sum_{d|j} (-1)^(j/d + 1) * (d^k - (d - 1)^k).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 3, 7, 15, 31, 63, ...
3, 9, 27, 81, 243, 729, ...
2, 12, 56, 240, 992, 4032, ...
4, 22, 118, 610, 3094, 15562, ...
4, 30, 196, 1230, 7564, 45990, ...
MATHEMATICA
T[n_, k_] := Sum[(-1)^(j + 1) * Quotient[n, j]^k, {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, May 27 2021 *)
PROG
(PARI) T(n, k) = sum(j=1, n, (-1)^(j+1)*(n\j)^k);
(PARI) T(n, k) = sum(j=1, n, sumdiv(j, d, (-1)^(j/d+1)*(d^k-(d-1)^k)));
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, May 27 2021
STATUS
approved