login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344726
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} (-1)^(j+1) * floor(n/j)^k.
8
1, 1, 1, 1, 3, 3, 1, 7, 9, 2, 1, 15, 27, 12, 4, 1, 31, 81, 56, 22, 4, 1, 63, 243, 240, 118, 30, 6, 1, 127, 729, 992, 610, 196, 44, 4, 1, 255, 2187, 4032, 3094, 1230, 324, 48, 7, 1, 511, 6561, 16256, 15562, 7564, 2336, 448, 71, 7, 1, 1023, 19683, 65280, 77998, 45990, 16596, 3840, 685, 83, 9
OFFSET
1,5
LINKS
FORMULA
G.f. of column k: (1/(1 - x)) * Sum_{j>=1} (j^k - (j - 1)^k) * x^j/(1 + x^j).
T(n,k) = Sum_{j=1..n} Sum_{d|j} (-1)^(j/d + 1) * (d^k - (d - 1)^k).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 3, 7, 15, 31, 63, ...
3, 9, 27, 81, 243, 729, ...
2, 12, 56, 240, 992, 4032, ...
4, 22, 118, 610, 3094, 15562, ...
4, 30, 196, 1230, 7564, 45990, ...
MATHEMATICA
T[n_, k_] := Sum[(-1)^(j + 1) * Quotient[n, j]^k, {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, May 27 2021 *)
PROG
(PARI) T(n, k) = sum(j=1, n, (-1)^(j+1)*(n\j)^k);
(PARI) T(n, k) = sum(j=1, n, sumdiv(j, d, (-1)^(j/d+1)*(d^k-(d-1)^k)));
CROSSREFS
Columns k=1..5 give A059851, A344720, A344721, A344722, A344723.
T(n,n) gives A344724.
Cf. A344725.
Sequence in context: A306759 A214362 A180735 * A116401 A106479 A114422
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, May 27 2021
STATUS
approved