The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182397 Numerators in triangle that leads to the (first) Bernoulli numbers A027641/A027642. 0
 1, 1, -3, 1, -5, 5, 1, -7, 25, -5, 1, -9, 23, -35, 49, 1, -11, 73, -27, 112, -49, 1, -13, 53, -77, 629, -91, 58, 1, -15, 145, -130, 1399, -451, 753, -58, 1, -17, 95, -135, 2699, -2301, 8573, -869, 341, 1, -19, 241 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS In A190339 we saw that (the second Bernoulli numbers) A164555/A027642 is an eigensequence (its inverse binomial transform is the sequence signed) of the second kind, see A192456/A191302. We consider this array preceded by 1 for the second row, by 1, -3/2, for the third one; 1 is chosen and is followed by the differences of successive rows. Hence                     1    1/2   1/6      0             1    -1/2   -1/3  -1/6  -1/30       1   -3/2    1/6    1/6  2/15   1/15   1 -5/2   5/3      0  -1/30 -1/15 -8/105. The second row is A051716/A051717. The (reduced) triangle before the square array (T(n,m) in A190339) is a(n)/b(n)= B(0)=    1 = 1                 Redbernou1li B(1)= -1/2 = 1  -3/2 B(2)=  1/6 = 1  -5/2  5/3 B(3)=    0 = 1  -7/2 25/6  -5/3 B(4)=-1/30 = 1  -9/2 23/3 -35/6  49/30 B(5)=    0 = 1 -11/2 73/6 -27/2 112/15 -49/30. For the main diagonal, see A165142. Denominator b(n) will be submitted. This transform is valuable for every eigensequence of the second kind. For instance Leibniz's 1/n (A003506). With increasing exponents for coefficients, polynomials CB(n,x) create Redbernou1li. See the formula. Triangle Bernou1li for A027641/A027642 with the same denominator A080326 for every column is 1 1  -3/2 1  -5/2 10/6 1  -7/2 25/6 -10/6 1  -9/2 46/6 -35/6  49/30 1 -11/2 73/6 -81/6 224/30 -49/30. For numerator by columns,see A000012, -A144396, A100536, Q(n)=n*(2*n^2+9*n+9)/2 , new. Triangle Checkbernou1 with the same denominator A080326 for every row is 1/1 (2    -3)/2 (6   -15  +10)/6 (6   -21  +25  -10)/6 (30 -135 +230 -175  +49)/30 (30 -165 +365 -405 +224 -49)/30; Hence for numerator: 1, 2-3, 16-15, 31-31, 309-310, 619-619, 8171-8166. Absolute sum: 1, 5, 31, 62, 619, 1238, 17337. Reduced division by A080326: 1, 5/2, 31/6, 31/3, 619/30, 619/15, 5779/70, = A172030(n+1)/A172031(n+1). LINKS FORMULA CB(0,x) = 1, CB(1,x) = 1 - 3*x/2, CB(n,x) = (1-x)*CB(n-1,x) + B(n)*x^n , n > 1. CROSSREFS Cf. A028246 (Worpitzky), A085737/A085738 (Conway-Sloane), A051714/A051715 (Akiyama-Tanigawa), A192456/A191302 for other triangles that lead to the Bernoulli numbers. Sequence in context: A082985 A111125 A209159 * A343510 A209560 A211977 Adjacent sequences:  A182394 A182395 A182396 * A182398 A182399 A182400 KEYWORD sign,frac,tabl AUTHOR Paul Curtz, Apr 27 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 14 07:13 EDT 2021. Contains 343879 sequences. (Running on oeis4.)